
Vulkan, Animations,
and the Ray-Tracing Pipeline
GUSTAF WALDEMARSON

ARM & LUND UNIVERSITY

Vulkan, Animations,
and the Ray-Tracing Pipeline
GUSTAF WALDEMARSON

ARM & LUND UNIVERSITY

20
22

-1
2-

05

Hello everyone and welcome to this presentation. I believe Mike have already given you a brief introduction,
but allow me to present myself. . .

Who am I?
• Industrial PhD Student at the Lund University Graphics Group
• Employed by Arm Sweden

(In the GPU Compiler team)

G. Waldemarson

Who am I?
• Industrial PhD Student at the Lund University Graphics Group
• Employed by Arm Sweden

(In the GPU Compiler team)

20
22

-1
2-

05

Who am I?

My name is Gustaf Waldemarson, an industrial PhD employed by Arm. As such, my work is split between
research here at Lund University and working for the Arm GPU compiler team up at Ideon.

As far as work goes, my research is primarily focused on various ray-tracing topics. Thus, today we figured
we would give you all a very brief introduction into Vulkan and the newfangled ray tracing pipeline that you
may have heard that many games have started to use.

That said, this presentation will mostly be an overview, so if you have any questions feel free to ask them as
we go along.

Additionally, if there is time I will also talk a little about some more advanced animation techniques, such as
how to interpolate and rotate cameras smoothly since some of my recent work have touched upon this.

Starting Off
What is Vulkan?

G. Waldemarson

Starting Off
What is Vulkan?

20
22

-1
2-

05

Starting Off

So lets start from the top shall we? What is Vulkan?

At its core, Vulkan is “just” another graphics API, just like OpenGL or DirectX. Which obviously begs the ques-
tion, why bother? By now you all know OpenGL fairly well, so what is the point learning another framework
to do essentially the same thing?

And the answer (at least historically), is performance. OpenGL and older versions of DX have many, many
years of “API baggage” that they need to support since many applications depend on these features.

In broad terms then: Vulkan (and modern DX) lets the programmers get closer to the hardware, potentially
unlocking more performance.

A Motivating Example
What is Vulkan?

Data VS FS Frame

Data VS FS Frame

Data VS FS Frame

G. Waldemarson

A Motivating Example
What is Vulkan?

Data VS FS Frame

Data VS FS Frame

Data VS FS Frame

20
22

-1
2-

05

A Motivating Example

Just to give you all a motivating example. As you have seen up until now, GL application typically works on a
frame-to-frame basis. This typically works just fine, but as you may already have seen in the earlier course,
it is not uncommon to have an asymmetric load on the pipeline.

There is nothing in the GL application that tells the driver that “oh, and by the way you can go ahead and do
some more vertex work”, so in order to achieve good performance, the driver must guess the intent of the
code.

In Vulkan, these things are done explicitly from the get-go: It is up to the programmer to tell Vulkan exactly
what dependencies are present such that it can efficiently pipeline the render jobs, such as in this facetious
example.

I should add though that it is possible to write OpenGL code such that the effect will be the same. But to do
that, the programmer must know what decisions the GPU driver will make, which of course, may be different
from one GPU vendor to another. So if you have ever heard a game developer talk about a “driver fast-path”,
this is what they are referring to.

Teaching Vulkan

• Shader
– glGetUniform()
– glUniform()

• Shader
– Layout

» Uniform Descriptors
» Descriptor Pools
» . . .

G. Waldemarson

Teaching Vulkan

• Shader
– glGetUniform()
– glUniform()

• Shader
– Layout

» Uniform Descriptors
» Descriptor Pools
» . . .

20
22

-1
2-

05

Teaching Vulkan

Tentative slide. This obviously begs the question: Why are we not teaching you graphics programming
using Vulkan?

The main reason is simply time. As an example: In GL, to change the uniforms you need in a shader you
update the shader, call glGetUniform and glUniform and you are pretty much done.

In Vulkan, such a change can be much more far-reaching: Changing the uniform also changes the “layout”
of the shader, which may require you to allocate more descriptors, which may require allocating a larger
descriptor pool and so on.

And, this is just to the equivalent of the glGetUniform, there is an equivalent amount of work needed to
perform the equivalent action for the glUniform call.

This is all done to match more closely to what is actually done inside the driver and the hardware, and we
could teach you these things, but they are pretty tedious, which means that much more work would be put
on unnecessary details compared to actually teaching useful graphics concepts, such as deferred shading.

Starting Off
Vulkan Basis

https://vulkan-tutorial.com/

G. Waldemarson

Starting Off
Vulkan Basis

https://vulkan-tutorial.com/

20
22

-1
2-

05

Starting Off

As I hope the previous example emphasized, describing the creation of a Vulkan app from scratch would take
hours by itself, so I will unfortunately not have time to go into much more details.

That said, the most well known Vulkan tutorial is the one that you find along this (very unsurprisingly named)
link, which walks through all the steps necessary to get a basic forward 3D renderer up and running. I went
through this tutorial at some point in the past and this served as an excellent starting point.

That said, I’m not sure if I want to recommend it. No matter how you twist it, writing a Vulkan app from scratch
is a long journey, and you have to write almost 2000 lines of code before you even get a basic triangle on the
screen. (A typical example for OpenGL is up and running in less than 100 lines). That said, you will learn a
lot about how a GPU actually works by the end, so whether this is worth it is up to you to decide.

https://vulkan-tutorial.com/
https://vulkan-tutorial.com/

The Vulkan Pipelines

Input assembler

Vertex shader

Tessellation

Geometry shader

Rasterization

Fragment shader

Color blending

Vertex/Index buffer

Framebuffer

0

1 2

0

1
2

0

1
2

0

1
2

3

Compute Shader

Data

Data

?

G. Waldemarson

The Vulkan Pipelines

Input assembler

Vertex shader

Tessellation

Geometry shader

Rasterization

Fragment shader

Color blending

Vertex/Index buffer

Framebuffer

0

1 2

0

1
2

0

1
2

0

1
2

3

Compute Shader

Data

Data

?

20
22

-1
2-

05

The Vulkan Pipelines

But now it is about time to change gears. Last week, Mike mentioned using OpenCL and other APIs to use the GPU for other,
possibly non-graphics related tasks. In fact, almost all new graphics APIs have access to a similar kind of pipeline. Collectively,
they are known as the compute-shader or compute-pipeline.

The typical use-case is pretty simple: Given some data in an array, operate on it and output data in another one.

Compare this with the raster pipeline, which goes all the way from primitive vertices and indices through many stages before you
finally arrive at some pixels in a framebuffer. In a compute-shader, the only thing you get from the pipeline is an index into some
array with up to 3 dimensions, what you do with that is then entirely up to you to write in shader code.

As a concrete example, consider how a ray tracer is typically implemented: It walks from pixel to pixel sending out rays as it goes.
This is often pretty easy to convert to a compute-shader, where the index represents the pixel it is currently sending rays from.

Naturally, Vulkan have access to this pipeline, and the compute-pipeline is in fact completely separated from the raster pipe, so
the setup for it is actually a lot simpler.

In fact, the compute-pipeline is sometimes so much simpler to use that some games skip the raster pipeline entirely and only use
compute-shaders for all rendering tasks.

The Ray Tracing Pipeline

trace()?

Ray Generation

Acceleration Structure

Traversal

Miss Closest Hit

No Ye s
Hit?

Any Hit

Intersection

trace() ?
NoYe s

https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/

G. Waldemarson

The Ray Tracing Pipeline

trace()?

Ray Generation

Acceleration Structure
Traversal

Miss Closest Hit

No Ye s
Hit?

Any Hit

Intersection

trace() ?
NoYe s

https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/

20
22

-1
2-

05

The Ray Tracing Pipeline

The raster- and compute-pipes are not the only ones, however. During the last few years, support has been
added for a few more pipelines, one of which is naturally the ray tracing pipeline, so let us get into that one
shall we?

Now, instead of our instead of our raster pipeline from the previous slide, we will replace it entirely with this
thing; a thing that can be a lot more complicated. In particular, I want to highlight this, up until now, the
pipelines have always been fixed and linear, but now we are actually giving the GPUs the ability to loop or
recurse based on user input.

There is of course a bit of setup required to get the Ray Tracing Pipeline up and running. And in the interest
of time, I will skip over quite a few details, but for the interested reader, I can recommend the Nvidia tutorial
on the subject. (I have linked down here, and I think we can make these slides and notes available later so
that you can look things up if you are interested.)

https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/
https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/

Ray Tracing Stages
The Ray Tracing Pipeline

• The ray generation shader,
• the accelerator traversal stage,
• the miss shader,
• closest hit shader,
• the intersection shader, and
• the any-hit shader.

G. Waldemarson

Ray Tracing Stages
The Ray Tracing Pipeline

• The ray generation shader,
• the accelerator traversal stage,
• the miss shader,
• closest hit shader,
• the intersection shader, and
• the any-hit shader.

20
22

-1
2-

05

Ray Tracing Stages

Essentially, we have 6 new stages to contend with:

• The ray generation shader,

• the accelerator traversal stage,

• the miss shader,

• closest hit shader,

• the intersection shader, and

• the any-hit shader.

Thankfully, these shaders all follow the basic semantics used in compute shaders, so it is very straightforward
to understand how to use each of these. In fact, writing the shaders is typically the easy part of using the ray
tracing pipe.

I will not be able to do justice to all of these as I haven’t actually used all of them extensively yet. But I will go
through them to give you an idea of the intent behind each stage.

The Acceleration Structure

T. Karras and T. Aila, “Fast parallel construction of high-quality bounding volume hierarchies,” in Proceedings of the 5th High-Performance Graphics
Conference, ser. HPG ’13, Anaheim, California: Association for Computing Machinery, 2013, pp. 89–99, ISBN: 9781450321358. DOI:
10.1145/2492045.2492055. [Online]. Available: https://doi.org/10.1145/2492045.2492055

G. Waldemarson

The Acceleration Structure

T. Karras and T. Aila, “Fast parallel construction of high-quality bounding volume hierarchies,” in Proceedings of the 5th High-Performance Graphics
Conference, ser. HPG ’13, Anaheim, California: Association for Computing Machinery, 2013, pp. 89–99, ISBN: 9781450321358. DOI:
10.1145/2492045.2492055. [Online]. Available: https://doi.org/10.1145/2492045.2492055

20
22

-1
2-

05

The Acceleration Structure

First though, we should probably talk about the acceleration structure. You have already gotten a taste of
how important something like this is from the first lab, and historically, a lot of the efforts surrounding ray
tracing has been focused around this structure.

However, for these modern APIs, this structure has been converted to a black box. In short: It has two levels,
each of which can be rebuilt or refit and rays can only be traced against the top level. In practice, however,
this structure is some kind of Bounding Volume Hierarchy, or BVH, that subdivides the search-space for each
ray sent to it. The simplest analogue is a binary search tree, but for 3D space instead.

Note however where a normal binary tree typically have a unique shape for a given input, finding the “best”
BVH for both 2D and 3D is believed to be an NP-hard problem [1], so a large amount of research has been
poured into finding good heuristics to quickly build a decent one.

https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055

The Acceleration Structure

TLAS

BLAS

Instances

G. Waldemarson

The Acceleration Structure

TLAS

BLAS

Instances20
22

-1
2-

05

The Acceleration Structure

The way we use this acceleration structure is as follows: As I mentioned, it is split into two levels, appropriately named:

TLAS Top-Level Acceleration Structure, and

BLAS Bottom-Level Acceleration Structure

The creation of these structures is a bit complex since there are many low level details to consider, but at a high level it is pretty
easy to see that we typically take our triangles and plop them into our BLASes, and then plop those BLASes into the TLAS. The
typical linear algebra approaches is also reused here: We use separate spaces for each objects:

• TLAS-space typically represents world-space, whereas

• BLAS space represents Object-space, but this interpretation is up to the programmer.

Additionally, As you can see here, it is possible to re-use the same BLAS multiple times to perform instancing, which can greatly
reduce the memory footprint for repeated objects.

Notice also the dependency: The TLAS cannot be built until all BLAS have been built. This often means that the TLAS is built
using a different (faster) algorithm.

Shader Binding Tables - 1

shaderGroupHandleAlignment

shaderGroupBaseAlignment

shaderGroupHandleSize shaderRecordEXT

G. Waldemarson

Shader Binding Tables - 1

shaderGroupHandleAlignment

shaderGroupBaseAlignment

shaderGroupHandleSize shaderRecordEXT

20
22

-1
2-

05

Shader Binding Tables - 1

There is also a somewhat non-obvious issue here: How do we know what shader to actually call?

In the raster pipeline, the shaders in use is always known (there is only one set of them after all), and those
are “blindly” executed. If we want to use a different one for some objects, we just bind a new shader and use
that instead.

But in the ray tracing pipeline, we typically need all triangles at once to build the acceleration structure, and
these may have different materials (or shaders) associated with them. So, we need to be able to call different
shaders from inside the GPU. How do we handle something like that?

Solving this issue is the task of the so-called shader binding table: Essentially a jump table (or vtable) for
shader calls during the ray tracing traversal. Interestingly, it is entirely up to the programmer to construct this
table, who must also adhere to several strict alignment requirements, as seen in this example here.

The programmer can even store some constant data for each shader in the ShaderRecordEXT segment.

Shader Binding Tables - 2

RG0 CH0M0 M1

CH1 CH2 CH3

RayGen RayMiss MaxLights

UniformLights ReSTIR Normals

G. Waldemarson

Shader Binding Tables - 2

RG0 CH0M0 M1

CH1 CH2 CH3

RayGen RayMiss MaxLights

UniformLights ReSTIR Normals

20
22

-1
2-

05

Shader Binding Tables - 2

As an example: In one of my applications I have structured my table like this. It has a single ray-gen shader,
two miss-shaders, and four different closest hit-shaders.

Thus, for this application the ray gen shader is only used once at the start to generate camera rays, but
afterwards, the properties of the primitives or what the shaders themselves are doing can influence which
shaders will be called next.

(Note that the hit-shaders are aligned to the Base alignment. This is required to allow this shader to be the
first in an array.)

Shaders
RayGen

layout(location = 0) rayPayloadEXT HitPayload hit;
void main()
{

ivec2 px = ivec2(gl_LaunchIDEXT.xy);
ivec2 sz = ivec2(gl_LaunchSizeEXT.xy);
// ...
vec4 origin = ...
vec4 dir = ...
traceRayEXT(...);
imageStore(image, px, vec4(hit.value, 1.0));

}

G. Waldemarson

Shaders
RayGen

layout(location = 0) rayPayloadEXT HitPayload hit;
void main()
{

ivec2 px = ivec2(gl_LaunchIDEXT.xy);
ivec2 sz = ivec2(gl_LaunchSizeEXT.xy);
// ...
vec4 origin = ...
vec4 dir = ...
traceRayEXT(...);
imageStore(image, px, vec4(hit.value, 1.0));

}20
22

-1
2-

05

Shaders

Next I thought I would mention some details about each of the ray tracing shader stages:

First up is the ray generation shader, it is arguable the simplest of the bunch and the basic idea is easy: For
each pixel, generate a camera ray and trace it through the Top-Level Acceleration Structure. Afterwards, the
final color is indicated by the hitPayload, a small structure that is passed along the recursive calls.

This is just for my app however, in games this is often a bit more complicated, such as reading a GBuffer and
only creating shadow rays, etc.

Intersection Shaders

?

G. Waldemarson

Intersection Shaders

?

20
22

-1
2-

05

Intersection Shaders

Next in line is arguably the intersection shader. By default, Vulkan has a built-in implementation for inter-
secting triangles, but it is also possible to intersect any geometry of your choosing. And for that, we use
Intersection shaders.

The main idea is that the acceleration structure is built to contain bounding boxes, then each of these boxes
is associated with an intersection shader that is called during traversal: Given that we hit the bounding box,
does the ray also hit the object inside it?

(Admittedly, I haven’t actually worked with this shader yet).

Hit Shaders

• Any-Hit Shader
• Closest-Hit Shader

G. Waldemarson

Hit Shaders

• Any-Hit Shader
• Closest-Hit Shader

20
22

-1
2-

05

Hit Shaders

Next we have the various types of “hit” shaders.

Shaders
Closest Hit

a.

G. Waldemarson

Shaders
Closest Hit

a.

20
22

-1
2-

05

Shaders

Starting with the closest hit: It is pretty unsurprisingly always going to return the closet hit point, such as a in
this case simple case.

Shaders
Any Hit

a.
b.

c.

G. Waldemarson

Shaders
Any Hit

a.
b.

c.

20
22

-1
2-

05

Shaders

But as I alluded to before, it is not the only one; we also have the any-hit shader. This shader is primarily
intended to implement some specialized types of operations, such as transparency; the way it works is that
given a ray going through some hierarchy, the shader can be called for any hit point along the path of the ray.

The primary task for this shader is then to perform some computations, then decide whether to commit the
intersection or not. Once committed, we effectively change the ray t_max, meaning that we cannot hit
anything after it.

Note though that it is not defined which hit is called first, it could be any hit along the path (such as a in this
case) but the implementation can return whichever of a, b or c, and once a hit is ‘committed’, no hit ‘behind’
it is reachable.

This is typically used to implement some kind of transparency where we do not care about refraction, but
there are all manner of things that can be done. As an example, consider the case where b is opaque, but
a and c are partially transparent. Further, let’s say that the traversal first calls the any-hit shader on c. Thus,
we see that we have a color that we should probably blend into our final color. Next, let’s say that we hit b.
Since this is opaque, we no longer care about anything behind it, so the previous result can be discarded.
Finally, we hit a, which gives us a color that we should blend with the opaque one.

Shaders
What to do in a hit shader?

x

false

true

G. Waldemarson

Shaders
What to do in a hit shader?

x

false

true

20
22

-1
2-

05

Shaders

But what do we actually do in a hit-shader? Well, that is really up to you, but as a simple example you
could apply a normal phong shading by looking up the direction to some lights, or you could send a new ray
recursively towards some light source to get a realistic shadowing effect.

This also opens up somewhat non-obvious issue: What exactly is a “hit”?

Unfortunately for us, there is really no free-lunch, we only get the bare minimum of information:

For triangle shaders, we only get two things: The ray t value of the hit and the barycentric coordinates. Any
other data must be computed or fetched separately.

(For intersection shaders, it is up to the programmer to specify what values will be returned.)

Shaders
Miss Shaders - 1

layout(push_constant) uniform constants
{

vec4 clear_color;
} PushData;
layout(location = 0) rayPayloadInEXT HitPayload hit;

void main()
{

hit.value = PushData.clear_color.xyz;
}

No Hit

G. Waldemarson

Shaders
Miss Shaders - 1

layout(push_constant) uniform constants
{

vec4 clear_color;
} PushData;
layout(location = 0) rayPayloadInEXT HitPayload hit;

void main()
{

hit.value = PushData.clear_color.xyz;
}

No Hit

20
22

-1
2-

05

Shaders

So, if we have hit-shaders, obviously we have to have the opposite: miss shaders. The idea is essentially if
we do not actually hit something, this shader will be called instead.

One examples of this in use is when we want to apply a fixed color when we don’t hit anything in the scene,
such as this shader here.

Shaders
Ray Miss - 2

layout(location = 1) rayPayloadInEXT bool in_shadow;

void main()
{

in_shadow = false;
}

x

false

true

G. Waldemarson

Shaders
Ray Miss - 2

layout(location = 1) rayPayloadInEXT bool in_shadow;

void main()
{

in_shadow = false;
}

x

false

true

20
22

-1
2-

05

Shaders

Another is when we want to add shadows to the object:

From the closest hit, we recursively trace a ray towards a light source, if that ray misses, the light sources is
actually in full view from the hit point, so it is not in shadow. Thus, we have a miss shader that simply informs
the closest hit (where we recursed from) that we are not in shadow.

Let Us Start Ray Tracing Then!
Command

vkCmdTraceRaysKHR(cmd, &rgen_addr, &rmiss_addr, &rchit_addr, &call_addr,
width, height, 1);

Shaders

layout(binding = 0, set = 0) uniform accelerationStructureEXT tlas;
void main()
{

ivec2 px = ivec2(gl_LaunchIDEXT.xy);
ivec2 sz = ivec2(gl_LaunchSizeEXT.xy);
// ...
traceRayEXT(tlas, /* ... */);
// ...
imageStore(image, px, vec4(color, 1.0));

}

G. Waldemarson

Let Us Start Ray Tracing Then!
Command

vkCmdTraceRaysKHR(cmd, &rgen_addr, &rmiss_addr, &rchit_addr, &call_addr,
width, height, 1);

Shaders

layout(binding = 0, set = 0) uniform accelerationStructureEXT tlas;
void main()
{

ivec2 px = ivec2(gl_LaunchIDEXT.xy);
ivec2 sz = ivec2(gl_LaunchSizeEXT.xy);
// ...
traceRayEXT(tlas, /* ... */);
// ...
imageStore(image, px, vec4(color, 1.0));

}

20
22

-1
2-

05

Let Us Start Ray Tracing Then!

Thus, to actually start ray tracing we do this:

In Vulkan call, vkCmdTraceRaysKHR, and give it the starting address for all shader types, as well as how
many rays to send (in a width/height/depth fashion, same as for compute shaders).

Next, the RayGen shader will start executing, which will of course, generate rays for the ray tracing process;
which is done by calling the TraceRayEXT function in the GLSL code. This call receives which acceleration
structure to use, what ray as well as some flags, which I have omitted here.

Finally, when everything has done its things with recursions and so forth, we will return to this shader, where
we usually have the final color that we want to write out somewhere, typically to a texture or frame-buffer.

Links

• https://gustafwaldemarson.com/misc/video/bart_kitchen.mp4

• https://gustafwaldemarson.com/misc/video/bart_museum.mp4

• https://gustafwaldemarson.com/misc/video/bart_robots.mp4

• https://www.youtube.com/watch?v=V2DEMSRBKHs

G. Waldemarson

Links

• https://gustafwaldemarson.com/misc/video/bart_kitchen.mp4

• https://gustafwaldemarson.com/misc/video/bart_museum.mp4

• https://gustafwaldemarson.com/misc/video/bart_robots.mp4

• https://www.youtube.com/watch?v=V2DEMSRBKHs

20
22

-1
2-

05

Links

Running live-demos rarely works, and in this case, I don’t even have a machine that can run the demo. Thus,
let us see if a recording can be used videos can be found here. These are of course my personal, and
arguably crappy applications.

If we instead look at a much better demo from some who have had a bit more man-hours available, we can
get some pretty impressive ray tracing action.

Nvidia says that this demo is entirely path-traced in real time, which is very impressive to say the least.

https://gustafwaldemarson.com/misc/video/bart_kitchen.mp4
https://gustafwaldemarson.com/misc/video/bart_museum.mp4
https://gustafwaldemarson.com/misc/video/bart_robots.mp4
https://www.youtube.com/watch?v=V2DEMSRBKHs
https://gustafwaldemarson.com/misc/video/bart_kitchen.mp4
https://gustafwaldemarson.com/misc/video/bart_museum.mp4
https://gustafwaldemarson.com/misc/video/bart_robots.mp4
https://www.youtube.com/watch?v=V2DEMSRBKHs

Animations

• Rigid Body Animation
• Per-Vertex Animation
• Skeletal Animation

G. Waldemarson

Animations

• Rigid Body Animation
• Per-Vertex Animation
• Skeletal Animation

20
22

-1
2-

05

Animations

(If there is time)

I typically work with offline ray tracing, but when it starts moving over to real-time, one need to start to consider
how to handle animations as well.

Naturally though, there several types of animations all with different pros and cons. The most common is
undoubtedly the Rigid Body Animation, which is what you have worked with the most in these two courses.

Beyond that, we have at least two major kinds of animations: Per-Vertex- and Skeletal Animations.

Rigid Body Animation

• Translation (t)
• Rotation (R)
• Scaling (S)

M3×4 =
[
R3×3S3×3

�� t3×1
]

struct RigidBody
{

Mesh mesh;
std::vector<vec3> translation;
std::vector<f32> times;
// ...

};

G. Waldemarson

Rigid Body Animation

• Translation (t)
• Rotation (R)
• Scaling (S)

M3×4 =
[
R3×3S3×3

�� t3×1
]

struct RigidBody
{

Mesh mesh;
std::vector<vec3> translation;
std::vector<f32> times;
// ...

};

20
22

-1
2-

05

Rigid Body Animation

But for completeness, let us start with rigid bodies: I think this may be familiar to most, but just in case:

There are 3 things that encompasses a rigid body transformation:

• Translations in space,

• Rotations,

• and Scaling, or Skewing operations.

Thus, any rigid body transform can thus be represented using a 4 × 3 matrix.

However, if you want to animate the transformations, these quantities must be kept separate when interpo-
lating and then combined when doing the actual rendering.

(It may be of interest to know that each of the transform ‘states’ are typically referred to as “keyframes”, or
simply “keys”.)

Rigid Body Animation

G. Waldemarson

Rigid Body Animation

20
22

-1
2-

05

Rigid Body Animation

As far as Vulkan is concerned with however, this type of animation fits directly into the ray tracing API.
When constructing the acceleration structure, each BLAS is associated with a rigid-body transform during
construction, thus animating this type of transform is trivial and only requires rebuilding or refitting of the
TLAS each frame.

BlendShape
Per-Vertex Animations

• Animate each vertex
+ Full control of any attribute
+ Simple to animate
− Data-intensive
− Rebuild/Refit after each

update
struct BlendShape
{

std::vector<Mesh> keys;
std::vector<f32> times;

};

G. Waldemarson

BlendShape
Per-Vertex Animations

• Animate each vertex
+ Full control of any attribute
+ Simple to animate
− Data-intensive
− Rebuild/Refit after each

update
struct BlendShape
{

std::vector<Mesh> keys;
std::vector<f32> times;

};

20
22

-1
2-

05

BlendShape

Next we have the so-called Per-Vertex Animations, or BlendShapes as they are sometimes called.

Per vertex animations are rather simple: Each attribute is allowed to be arbitrarily deformed, so we just
interpolate between them. This essentially give us full control of the animation with a relatively easy algorithm
(implementation wise). However, as you can imagine, per-vertex animations requires duplicating each mesh
for each of the keys, which may be very data intensive.

Additionally, since the animation is entirely arbitrary, the BLAS that contains it must also be refit or rebuilt
after each animation step.

but it still the favored approach for some complex animations with a lot of motion, such as accurate facial
animations.

Skeletal Animation

• Attach vertices to “bones”
+ Less data intensive
− Complicated compute step

+/− Good fit for raster pipeline

Vertices Bones

VS FS

G. Waldemarson

Skeletal Animation

• Attach vertices to “bones”
+ Less data intensive
− Complicated compute step

+/− Good fit for raster pipeline

Vertices Bones

VS FS

20
22

-1
2-

05

Skeletal Animation

Lastly, we have skeletal animations, as the name suggests, it is based around the animation of “bones” that
the vertices are attached to.

In essence, this makes for a less data-intensive animation process, but makes the animation algorithm much
more complicated.

This has traditionally been used very effectively on the raster pipeline, since the bone animation typically
maps pretty well to the vertex shader. However, there is no such mapping between the current ray tracing
APIs and skeletal animations.

Interpolation

• Step (2-point)
• Linear (2-point)
• Spline (n-points)

– Bezier
– Catmull-Rom
– TCB

 lerp()

 Bezier

G. Waldemarson

Interpolation

• Step (2-point)
• Linear (2-point)
• Spline (n-points)

– Bezier
– Catmull-Rom
– TCB

 lerp()

 Bezier

20
22

-1
2-

05

Interpolation

For completeness, I’ve included this slide about interpolations. That is, an algorithm for computing the values
between two other values. And as this list hints at, there are many interpolation algorithms out there. Linear
interpolation is well known, but for smooth animation variations of Bezier curves are commonly.

Suffice to say that my demo uses the so called TCB splines, since that is what the scenes I’m using have
data for. The details of this type of spline are not really important for this presentation, however.

Interpolating Rotations
Quaternions and Spherical Interpolation

• Rotations are tricky to interpolate
– In short, use Quaternions.
– Efficient algorithm to interpolate between

orientations, “slerp”

K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 245–254, Jul. 1985, ISSN: 0097-8930. DOI:
10.1145/325165.325242. [Online]. Available: https://doi.org/10.1145/325165.325242

G. Waldemarson

Interpolating Rotations
Quaternions and Spherical Interpolation

• Rotations are tricky to interpolate
– In short, use Quaternions.
– Efficient algorithm to interpolate between

orientations, “slerp”

K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 245–254, Jul. 1985, ISSN: 0097-8930. DOI:
10.1145/325165.325242. [Online]. Available: https://doi.org/10.1145/325165.325242

20
22

-1
2-

05

Interpolating Rotations

Interpolating between locations and scaling factors is pretty easy, but it may not be obvious is how to interpo-
late rotations. In short, one uses the Quaternion based algorithm known as slerp or “spherical interpola-
tion”. As a descriptive example: Consider the task of interpolating between two points on a circle. You cannot
linearly interpolate, as that would “cross” the circle. Instead, you have to use some trigonometry to correctly
find the point along the arc. This is essentially what the slerp algorithm does.

https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242

Interpolating Rotations
Quaternions and Spherical Interpolation

Figure: 3D spherical interpolation exampleG. Waldemarson

Interpolating Rotations
Quaternions and Spherical Interpolation

Figure: 3D spherical interpolation example

20
22

-1
2-

05

Interpolating Rotations

Typically though, we are interested in the 3D rotations, which is the primary reason to use Quaternions.
Without them, computing this kind of orientation change would be pretty tricky.

Thanks for Listening
Questions

• Thanks for listening!
• Questions and Answers ?

G. Waldemarson

Thanks for Listening
Questions

• Thanks for listening!
• Questions and Answers ?

20
22

-1
2-

05

Thanks for Listening

But that is all, so thanks for listening; if you have any other question, compiler related or otherwise feel free
to ask!

Compiler Master Thesis
Minimum Register Sufficiency Approximation for Scheduling DAGs

Registers reads 32

32

32

8

8

16

T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms,” J. ACM, vol. 46, no. 6,
pp. 787–832, Nov. 1999, ISSN: 0004-5411. DOI: 10.1145/331524.331526. [Online]. Available: https://doi.org/10.1145/331524.331526

G. Waldemarson

Compiler Master Thesis
Minimum Register Sufficiency Approximation for Scheduling DAGs

Registers reads 32

32

32

8

8

16

T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms,” J. ACM, vol. 46, no. 6,
pp. 787–832, Nov. 1999, ISSN: 0004-5411. DOI: 10.1145/331524.331526. [Online]. Available: https://doi.org/10.1145/331524.331526

20
22

-1
2-

05

Compiler Master Thesis

In modern GPUs, one of the goal of the compiler is to maximize thread occupancy which is normally achieved
by keeping register usage below a certain threshold. However, scheduling with the main goal of reducing
register pressure often yield suboptimal performance as it hinders the instruction level parallelism (ILP), i.e.
penalizing latency, within a single thread.

The goal of this thesis is to research techniques for approximating the minimum register requirement for a
given scheduling DAG. The idea is to be able to compute the register requirements of a program in a timely
fashion (i.e. polynomial time) before scheduling and provide this information to the scheduler. The work will
be conducted and integrated in the LLVM based Mali GPU compiler backend.

One related work in literature to be considered as a starting point for this work is [3].

https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526

Graphics Master Theses

• GPU Animations for the Ray Tracing Pipeline
• Volume Sampling Triangle Meshes
• VR Hyperlapse
• . . .

G. Waldemarson

Graphics Master Theses

• GPU Animations for the Ray Tracing Pipeline
• Volume Sampling Triangle Meshes
• VR Hyperlapse
• . . .

20
22

-1
2-

05

Graphics Master Theses

Mike and I are also working on setting up some additional topics that are more directly tied to graphics. I should stress though that
these are not done as an Arm intern, which gives us a bit more freedom in choosing topics.

In particular, I would be very interested in supervising students looking into various strategies for performing animations inside the
ray tracing pipeline.

Beyond that, we are also looking into various ways of efficiently distributing samples inside the volume of a mesh. Typically, in
graphics we almost exclusively work with the surfaces of objects, but occasionally we also need to understand the inside; things
such as smoke or clouds all change appearance based on the relative density inside it.

Additionally, consider destructible objects: If we want the destruction process to be believable for arbitrary objects, a very efficient
algorithm for finding realistic internal fracture points is necessary. These types of algorithms could be a good starting point.

Finally, we were thinking of looking into ways of doing sped up VR recordings. It is already straightforward to record and replay VR
experiences, but if you try to speed it all up you often only get a nauseating mess. For video there is already a technique informally
known as hyperlapsing and it would be interesting to see if some of these techniques could be applied to VR.

These are of course only a few suggestions, if you have something else in mind, feel free to talk with Mike, Rikard or me, and we
will see if we can create a project around that.

Ray Tracing Links

• https://www.gsn-lib.org/docs/nodes/raytracing.php

G. Waldemarson

Ray Tracing Links

• https://www.gsn-lib.org/docs/nodes/raytracing.php

20
22

-1
2-

05

Ray Tracing Links

https://www.gsn-lib.org/docs/nodes/raytracing.php
https://www.gsn-lib.org/docs/nodes/raytracing.php

The End

The End

20
22

-1
2-

05

References

[1] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding volume hierarchies,” in
Proceedings of the 5th High-Performance Graphics Conference, ser. HPG ’13, Anaheim, California:
Association for Computing Machinery, 2013, pp. 89–99, ISBN: 9781450321358. DOI:
10.1145/2492045.2492055. [Online]. Available:
https://doi.org/10.1145/2492045.2492055.

[2] K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH Comput. Graph., vol. 19,
no. 3, pp. 245–254, Jul. 1985, ISSN: 0097-8930. DOI: 10.1145/325165.325242. [Online].
Available: https://doi.org/10.1145/325165.325242.

[3] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms,” J. ACM, vol. 46, no. 6, pp. 787–832, Nov. 1999, ISSN: 0004-5411. DOI:
10.1145/331524.331526. [Online]. Available:
https://doi.org/10.1145/331524.331526.

G. Waldemarson

References

[1] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding volume hierarchies,” in
Proceedings of the 5th High-Performance Graphics Conference, ser. HPG ’13, Anaheim, California:
Association for Computing Machinery, 2013, pp. 89–99, ISBN: 9781450321358. DOI:
10.1145/2492045.2492055. [Online]. Available:
https://doi.org/10.1145/2492045.2492055.

[2] K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH Comput. Graph., vol. 19,
no. 3, pp. 245–254, Jul. 1985, ISSN: 0097-8930. DOI: 10.1145/325165.325242. [Online].
Available: https://doi.org/10.1145/325165.325242.

[3] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms,” J. ACM, vol. 46, no. 6, pp. 787–832, Nov. 1999, ISSN: 0004-5411. DOI:
10.1145/331524.331526. [Online]. Available:
https://doi.org/10.1145/331524.331526.20

22
-1

2-
05

References

[1] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding volume hierarchies,” in Pro-
ceedings of the 5th High-Performance Graphics Conference, ser. HPG ’13, Anaheim, California: Asso-
ciation for Computing Machinery, 2013, pp. 89–99, ISBN: 9781450321358. DOI: 10.1145/2492045.
2492055. [Online]. Available: https://doi.org/10.1145/2492045.2492055.

[2] K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH Comput. Graph., vol. 19, no. 3,
pp. 245–254, Jul. 1985, ISSN: 0097-8930. DOI: 10.1145/325165.325242. [Online]. Available:
https://doi.org/10.1145/325165.325242.

[3] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in designing ap-
proximation algorithms,” J. ACM, vol. 46, no. 6, pp. 787–832, Nov. 1999, ISSN: 0004-5411. DOI: 10.
1145/331524.331526. [Online]. Available: https://doi.org/10.1145/331524.331526.

https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526

	References
	References

