Lab 1: Whitted Ray Tracing

EDAN35

This assignment will introduce you to some of the basic concepts of ray
tracing. In order to pass the assignment you need to complete all tasks.
Make sure you can explain your solutions in detail. You only need to
make changes in the traceRay() and main() functions in main.cpp, the
intersect () function in swTriangle.cpp, and the getReflectedRay () and
getRefractedRay () functions in swIntersection.cpp to complete the lab.

1 Introduction

Start out by cloning swTracer at:
https://github.com/LUGGPublic/Labl-RayTracing

and making sure that it compiles and runs without any errors. This initial
incarnation of the ray tracer is only capable of shooting eye rays and detecting
whether they hit any spheres in a scene or not. After the program has finished
running, you should find an image file out.png in the directory where the
compiled executable resides. On Windows this could be

Labl-RayTracing/out/build/windows-default/Debug/out.png

The image should be white for where eye rays hit a sphere, and black other-
wise.

2 Diffuse Reflection

Currently, there is no lighting calculation in the scene. To be able to see the
spheres that have been intersected, we can add diffuse shading. For now, we
only consider direct illumination that originates from a point light source.


https://github.com/LUGGPublic/Lab1-RayTracing

When a ray intersects a sphere, a sw: : Intersection object is returned.
This object contains useful information about the ray-sphere intersection
event. Including the world position and normal at the hit point, as well as
the material of the object.

Task 1 Use the intersection information to implement diffuse shading using
direct illumination from a single point light source.

3 'Triangles

Supporting only spheres in a ray tracer quickly becomes very limiting. To
represent more interesting shapes, we can add support for triangles, which
allows us to render any triangulated geometry.

Just like sw: : Sphere inherits from the abstract class sw: :Primitive and
implements an intersect () function, we have sw: : Triangle inheriting from
sw: :Primitive, but currently missing its intersect () function.

Task 2 Implement ray-triangle intersection. Don’t forget to uncomment the
lines that add the triangles for the floor in the scene.

Use the ray-sphere intersection function as guidance for how the intersection
object should be constructed once an intersection is found. Once ray-triangle
intersection is working, uncomment the rest of the box.

4 Shadows

An important visual cue in images are shadows. If there is an object between
the hit point and the light source, then there is no direct illumination, and
the directColor should be set to 0. By sending a shadow ray from the hit
point to the light source and checking for intersections, we can determine if
the hit point is in shadow or not.

Task 3 Implement shadow rays by shooting rays from the hit point towards
the light source.

Task 4 In getShadowRay () where the shadow ray is created, investigate
what happens if a small epsilon is not used for t.



5 Reflection

The next step to achieve more realistic looking images is to add reflections.
Real world materials are of course neither perfectly diffuse nor perfectly spec-
ular, but a combination of the two components can give fairly convincing pol-
ished materials. Similar to shadow rays in the last exercise, a reflectance ray
can be spawned at the point of intersection. Each material has a parameter,
reflectivity or r. Combine the reflected colour with the direct illumination
colour using linear interpolation based on the reflectivity.

Task 5 Implement specular reflection, where each intersection where r > 0
spawns a new reflectance ray. Don’t forget to uncomment the lines that
add two reflective spheres to the scene. Note: It is possible for a ray to get
“trapped” in an infinite series of reflections, so we introduce some stopping
criteria. The easiest solution is simply terminating the ray tracing at a fixed
recursion depth.

Task 6 Add a few more spheres to the scene and play around with different
reflectivity values.



6 Refraction

Another important feature of a ray tracer is the ability to handle transparency
and refractions. Many real materials are more or less transparent (glass,
plastic, liquids, etc). When light enters a transparent material, it is usually
bent or refracted. How much is determined by the index of refraction of the
material. By using Snell’s law we can compute the refraction vector. For
more details on refraction, see the lecture notes.

Similar to the reflection term, we add the refraction term to our light
calculation as follows;

L= (1—r—t)directColor +rLs+tL;

where r is reflectivity, t is transparency, Lg is the light returned from the
reflected ray, and L, is the light returned from the refracted ray.

Just like for reflection, a refraction ray can be traced by (recursively)
spawning a new ray at the hit point of a refractive surface where t > 0.
Like before, we interpolate between the direct illumination, reflection and
refraction components, so it should hold that » +¢ < 1.

Task 7 Implement refraction in your ray tracer. Don’t forget to uncomment
the lines that add two refractive spheres to the scene. Those spheres will have
both a reflective and a refractive component.

Task 8 Try different combinations of the r and t parameters.

7 Supersampling

If you look closely at the pixels generated in the images so far, you will see
that the edges appear jagged. This is because we only trace one ray through
each pixel. To get a smoother result we need to increase the number of
samples using a technique called supersampling.

Task 9 Implement stratified grid sampling to produce anti-aliased images.
Note that the output colour should be the average of the colour returned
by the samples. Unfortunately, performance scales linearly with the number
of samples you use. You can try to use 3 x 3 samples per pixel, and then
zoom in on the silhouette of a sphere to see the improved result. It may also
help to lower the recursion depth cutoff for reflection/refraction rays (3 or so
should be enough).



8 Ways forward

Your Whitted Ray Tracer is now done for this lab, but there are many ways
you can expand upon it, either in your free time or as part of the course
project. Here are some examples:

e Load more complex scenes by using a model loader like tinyobjloader,
https://github.com/tinyobjloader/tinyobjloader.

e Accelerate the ray intersection testing by introducing a spatial data
structure like a BVH

e Parallelize the ray tracing by using multiple CPU cores, using threading
or OpenMP

e Parallelize the ray tracing by implementing it on the GPU


https://github.com/tinyobjloader/tinyobjloader

	Introduction
	Diffuse Reflection
	Triangles
	Shadows
	Reflection
	Refraction
	Supersampling
	Ways forward

