
Assignment 2: Deferred Shading and Shadow Maps
Lund University Graphics Group

Figure 1: The main window using the Bonobo framework with de-
bug windows for off-screen buffers, and performance timings.

1 Deferred shading
1.1 Getting started
Follow the instructions found in the BUILD.rst file on GitHub
to setup everything. For the last steps of the setup, you
should use src EDAN35 instead of src EDAF80, and
EDAN35_Assignment2 instead of EDAF80_Assignment1.
When you start the program, you will see the diffuse texture color
of the Sponza atrium model. A recap of application and IDE short-
cuts can be found in Section A and B at the end of this document.

All your changes should be in src EDAN35
assignment2.cpp and the shaders shaders EDAN35
fill_gbuffer.frag and shaders EDAN35

accumulate_light.frag.

1.2 Buffer viewing
In this assignment you will use debugging utilities built into the
Bonobo framework. In particular, the buffers that are used are
drawn in small windows inside the main window, as illustrated in
Figure 1. This functionality allows you to look at the different ge-
ometry and light buffers that are being generated by the shaders.
In the main window, from the top left is the current light’s shadow
map, then the accumulated light diffuse and light specular buffers.
Across the bottom of the window, from left to right is, the diffuse
texture, the specular component, the normal texture, and the depth
buffer.

In addition to the showing the buffers, there is are three different
GUI windows:

1. One for showing the application logs;

2. One for controlling some scene parameters like pausing the
light animations or reducing the number of lights used;

3. And one for listing how long each pass took to perform, from
the point of view of the GPU.

1.3 Render pass setup
There are three main rendering passes:

1. Rendering the geometry buffer;

2. Rendering the shadow maps and accumulating the lights;

3. Final resolve using GBuffer and Light Buffer.

At the beginning of each pass three things must be set
correctly: framebuffers, shaders and clears. Framebuffers
are set using glBindFramebuffer(), and shaders using
glUseProgram(). Clears are performed by setting the clear
value with either glClearDepth() or glClearColor(), and
then issuing the glClear() command with the correct bits set, ei-
ther GL_DEPTH_BUFFER_BIT or GL_COLOR_BUFFER_BIT.

1.4 Rendering the geometry buffer
First off you need to render a geometry buffer. The geometry buffer
is, in our case, a collection of four buffers, with the same size as
the window we are rendering into. These four buffers are grouped
together under a framebuffer object, which can then be used as an
alternative destination to the screen when rendering, i.e. instead of
having the output of the fragment shaders being shown on screen,
they will be saved into the framebuffer. As a framebuffer object can
have multiple attached buffers, the fragment shader can output mul-
tiple values and use the layout (location = X) notation to
match an output variable to a buffer.

Into these buffers, we write values making it possible for us to
recreate the geometric information we need at each pixel to perform
the lighting calculations.

There are four buffers in the geometry buffer, all stored in the
textures variable at the following indices:

• Texture::GBufferDiffuse has the diffuse texture
color, which is displayed in the first window from the left

• Texture::GBufferSpecular has the specular color,
which is displayed in the second window from the left

• Texture::GBufferWorldSpaceNormal has the nor-
mal and is displayed in the third window, and is all black at
startup

• Texture::DepthBuffer is in the window on the right.

Note that you can still move around and see how that effects the
geometry buffer in real time.

Start by moving the camera around, and look towards the sky.
Which artefacts can you see? Why is it happening and how
could you fix it?

Open assignment2.cpp and find the function run().
Scroll down to where it says “Pass 1”, look at the code that ren-
ders the geometry to the geometry buffer. This loops through
all the geometry in the scene, and renders it using the shaders
fill_gbuffer.vert and fill_gbuffer.frag. However,
this is rendered into the four buffers of the geometry buffer, instead
of rendered to the screen.

Look in the shader fill_gbuffer.vert. This is similar to
vertex shaders that you have seen before. You project the vertices
positions to the screen and pass through the texture coordinates
as well as the normal, tangent and binormal. You do not have to
change anything in this shader.

Now look at fill_gbuffer.frag. Here you can see where
you write the values to the different textures of the geometry buffer.
geometry_diffuse corresponds to the diffuse texture, and so
forth. If you look at geometry_diffuse, you can see how we
write the diffuse texture. This is finished and you do not have to
change this.

However, you do need to fix what you write to
geometry_normal. Remember that normals have their
components in [−1, 1], but for textures they are in [0, 1]. The
normal part of the buffer should look similar to Figure 2.

https://github.com/LUGGPublic/CG_Labs/blob/master/BUILD.rst


EDAN35 — High Performance Computer Graphics 2021

Figure 2: World space normals, encoded into RGB.

Render geometry buffer:

• Clear buffers that need to;

• Write normal to geometry_normal.

1.5 Adding light sources and shading
Next step is adding light sources. Four light sources are added au-
tomatically in the beginning. It is easy to add more, just set a higher
amount to constant::lights_nb in assignment2.cpp.

Open accumulate_lights.frag up and look at it. Right
now it only outputs a constant value of

(
0 0 0 1

)
. Change

the written value for the red channel to 0.2 for example; any value
will do as long as the final color is not pure black. Now reload the
shaders and have a look at the small window displaying the con-
tent of texture Texture::LightDiffuseContribution.
You should see the region lit by a spotlight, but what hap-
pens as the spotlight rotates? You should probably go to
assignment2.cpp and have a quick look at what happens
during the second pass. Once that has been fixed, go back
to accumulate_lights.frag. Here you should implement
Phong shading, as you did in the introductory course. To do that
you will need the position of the light source, and the position and
normal of the geometry.

The normal of the geometry is available to you, as you wrote
it to the geometry buffer. Now you need to retrieve it. As said,
the geometry buffer is a collection of fullscreen textures. We need
to locate and read the texel corresponding to the current pixel. To
calculate the texture coordinates, look at gl_FragCoord again.
What do the X and Y component contain? We also provide you
with inverse_screen_resolution, a vec2 containing the
inverse of the windows resolution. Remember that you moved and
scaled the normal to fit the textures [0, 1] range. This needs to be
undone.

You will also need the world-space position of the pixel to
shade it. Similar to the normal, you should be able to read
and extract the depth from the depth part of the geometry
buffer. You should then be able to compose a screen-space po-
sition with the depth and perform the inverse projection using
the camera.view_projection_inverse matrix supplied.
Don’t forget to divide by w.

Now, having the positions of both the light source and the
geometry to be shaded, and the normal. You should do a
simple phong calculation, but without the ambient term as
it will be added during the last pass. Similarly, kd and ks

will also be added during the last pass. The remaining of
the phong diffuse and specular terms should be placed into
their respective buffers light_diffuse_contribution and
light_specular_contribution.

Figure 3: Lighting of one light source.

Render light sources:

• Clear any buffers that need to;

• Calculate texture coordinates from screen position;

• Extract normal from geometry buffer;

• Extract depth from geometry buffer;

• Perform inverse projection to obtain world space position;

• Calculate phong shading.

1.6 Falloff and composition
To get a nice, correct lighting the light should have a falloff. The
distance falloff is based on the square of the distance between the
geometry and the light source. Similarly, as we are using a spot-
light, it should have an angular falloff, depending upon the angle
between direction from the light source to the geometry and the di-
rection of the light. This is dependant upon the type of spotlight
(reflector behind the bulb, etc.) so there is no right way of doing it.
Implement a solution and make sure it reaches zero before 45◦.

As the loop iterates over the light sources, their individual con-
tribution is added by using an accumulative blend mode. This is
done for you.

After this, the result should look similar to Figure 3.

Falloff and composition:

• Calculate distance falloff;

• Calculate angular falloff;

• Composite light using phong shading, falloffs and
light_intensity and light_color.

2 Shadow Maps
Looking at the result, only one thing is missing, shadows. For this
lab we are using the technique called shadow maps. Shadow maps
work by rendering a depth map from the point of view of the light
source, e.g. the depth values of the surfaces hit by light from that
light source.

2.1 Rendering the shadow map
First off, you need to render the shadow map. Most of the work has
already been done in assignment2.cpp, but still the content of
the shadow map (displayed in the window in the top left corner)
remains completely black. What is possibly happening, and how
can you fix it? If all this is done correctly, you should now be
able to see the result in the small debug at the top left. The shadow
map is called shadowmap_texture. It should look similar to
the depth buffer part of the geometry buffer, however it should have
a continuous rotation, and not react to the controls.

2



EDAN35 — High Performance Computer Graphics 2021

Figure 4: Lighting of one light source, with shadows.

Figure 5: Lighting of one light source, with close up of the shadow.

Rendering the shadow map:

• Find out why the shadow map is black.

2.2 Using the shadow map
Now, while rendering the light from a light source, we can use the
shadow map to check if a certain pixel is in shadow. Go back to
the spotlight shader. To determine if a pixel is in shadow, use the
matrix called lights[light_index].view_projection
to see what texel of the shadow map the pixel projects into by per-
forming the projection. Don’t forget to divide by w. By doing the
projection, you also calculate the depth of the fragment, in the pro-
jection space of the shadow map camera. This should be compared
to the depth read from the shadow map at the projected position to
determine if the surface is hit by light from the light source at this
depth. Remember that the projected values are in the range [−1, 1],
the depth in the shadow map is between [0, 1] and texture coordi-
nates should be in [0, 1].

The result of this comparison should be used to determine if any
light should be added at all. The result should look similar to Fig-
ure 4. However, if you look closer, it looks like Figure 5, which
brings us to Percentage Closer Filtering.

Using the shadow map:

• Project world space position using the shadow camera’s view-
projection matrix;

• Calculate the depths;

• Compare and adjust the light.

Figure 6: Lighting of one light source, with PCF-filtered shadows.

Figure 7: Lighting of one light source, with close up of PCF-filtered
shadows.

2.3 Percentage Closer Filtering
To reduce the blockiness of the shadows, we are going to implement
a technique called Percentage Closer Filtering or PCF. This is done
by basically doing more lookups in the shadow map, and weight-
ing the results together. To do this, implement a sampling scheme
around the projected position of the fragment. The sampling can be
as simple as a double for-loop doing regular grid sampling. Com-
pare each read and extracted depth with the same calculated depth
and weigh the results together. The result should look like Figures 6
and 7, the final scene should look like Figure 8.

Percentage Closer Filtering:

• Sample the shadow map at several positions;

• Compare the depths:

• Weight the results together and adjust the light.

3 Voluntary part: Normal maps
Now, to make the rendering even better looking. This part is volun-
tary, and not required to pass the assignment.

In the introductory course, you implemented a method called
bump mapping. This is a similar technique for adding details by
using a texture to alter the normal of the surface. If you look in
the res crysponza textures directory, you can see several
textures that are mostly purple, with green and red streaks. These
are normal maps, where each pixel is a normal, encoded in a sim-
ilar way to how you encoded your normals in the geometry buffer.

3



EDAN35 — High Performance Computer Graphics 2021

Figure 8: Final solution.

Figure 9: World-space normals, using normal maps, encoded into
RGB.

However, different from your normals, these normals are not ex-
pressed in world space, but in a space called tangent space. This is
a 3D-space aligned with the normal and the directions of the texture
coordinate space. Using a 3 × 3 matrix representing this space, you
can transform the encoded normal to world space, which adds a lot
of detail to the shading of the scene.

This is done before writing the normal to the geometry buffer
in fill_gbuffer.frag. Instead of just normalizing the
fs_in.normal and changing the range of it, use the supplied
fs_in.tangent, fs_in.binormal and fs_in.normal to
create a 3 × 3 matrix, transforming from tangent space to world
space. Look at GLSL’s mat3 constructor taking three vec3s as ar-
guments. Use the created matrix to transform the normal read from
the normal map. Don’t forget to normalize and encode it in a range
suitable for writing to the normal texture.

The normal buffer should go from looking like Figure 2 to Fig-
ure 9.

The final result, with details added by the normal maps should
look like Figure 10.

Normal maps:

• Setup tangent space;

• Read normal from normal map;

• Transform normal to world space;

• Write the transformed normal to geometry buffer.

Figure 10: Lower left without normal maps. Upper right with nor-
mal maps.

Table 1: Various controls when running an assignment.“Reload
the shaders” is not available in assignments 1 and 2 of EDAF80,
while “Toggle fullscreen mode” is missing from assignment 2 of
EDAN35.

Action Shortcut

Move forward W

Move backward S

Strafe to the left A

Strafe to the right D

Move downward Q

Move upward E

“Walk” modifier
“Sprint” modifier Ctrl

Reload the shaders R

Hide the whole UI F2

Hide the log UI F3

Toggle fullscreen mode F11

A Framework controls
The framework uses standard key bindings for movement, such as
W , A , S , and D . But there are also custom key bindings for

moving up and down, as well as controlling the UI. All those key
bindings are listed in Table 1.

There is only one action currently bound to the mouse, and that
is rotating the camera. To do so, move the mouse while holding the
left mouse button.

GUI elements can be toggled being a collapsed and expanded
state by double clicking on their title bar. And they can be moved
around the window by dragging their title bar wherever desired
(within the window).

B IDE key bindings
To help with getting certain tasks done more efficiently, Table 2 lists
key bindings of different IDEs for several common actions.

4



EDAN35 — High Performance Computer Graphics 2021

Table 2: Various keyboard shortcuts for Visual Studio 2019 and 2017, and Xcode.

Action Shortcut

Visual Studio Xcode

Build Ctrl + B + B

Run (with the debugger) F5 + R

Run (without the debugger) Ctrl + F5

Toggle breakpoint at current line F9 + \

Stop debugging + F5 + .

Continue (while in break mode) F5 ctrl + + Y

Step Over (while in break mode) F10 F6

Step Into (while in break mode) F11 F7

Step Out (while in break mode) + F11 F8

Comment selection Ctrl + K , Ctrl + C + /

Uncomment selection Ctrl + K , Ctrl + U + /

Delete entire row Ctrl + X

5


	Deferred shading
	Getting started
	Buffer viewing
	Render pass setup
	Rendering the geometry buffer
	Adding light sources and shading
	Falloff and composition

	Shadow Maps
	Rendering the shadow map
	Using the shadow map
	Percentage Closer Filtering

	Voluntary part: Normal maps
	Framework controls
	IDE key bindings

