
EDAN35: High Performance Computer Graphics
Assignment 2: Deferred shading and shadow maps

1 Deferred shading

The purpose of this exercise is to get a higher understanding of how
advanced graphics can be done using shaders.

1.1 Getting started

Download the code from the assignments website, and unpack the
zip-file. Start Microsoft Visual Studio by clicking on the Render-
Chimp.sln file.

Check in EDAN35. There is deferred.cpp and a folder with shaders.
All your changes should be in these. When you start the program,
a dim image of the Sponza atrium appears. You can move with
WASD and the left mousebutton.

1.2 Resource viewer

In this assignment you will be using something called the resource
viewer extensively. The resource viewer is functionality in Ren-
derChimp that allows you to look at the geometry and the textures
that are loaded in the graphics engine. It also allows you to inspect
render targets in realtime.

The resource viewer has to modes, one for textures and one for
geometry. The texture mode is entered by pressing F2 on windows
and 2 on macos x. Geometry mode is entered by pressing F3 of 3.

In each mode you can flip through the resources using the ar-
rowkeys, left and right for one resource forward and backwards,
and up and down for ten resources at a time.

In texture mode you can also separate the channels and see each
channel by itself, as seen in Figure 2. This is done by pressing
space.

Resource viewer controls:

• Enter and exit texture mode: F2(win) or 2(mac)

• Enter and exit geometry mode: F3(win) or 3(mac)

• Flip forward: right arrow

• Flip backwards: left arrow

• Flip 10 forward: up arrow

• Flip 10 backwards: down arrow

• Switch between composed and separated channels: space

1.3 Rendering the geometry buffer

First off you need to render a geometry buffer. The geometry buffer
is, in our case, a collection of three textures, with the same size as
the window we are rendering into. By binding these textures as a
render target, we set the graphics pipeline to put the resulting pixel
color into these textures instead of writing it to the screen. Also,
as we have three textures bound as render targets, we need to select
which one to write to in the pixel shader.

Figure 1: Diffuse texture

Into these three textures, we write values making it possible for
us to recreate the geometric information we need at each pixel to
perform the lighting calculations.

Start by looking at the different textures in the geometry buffer in
the resource viewer.

There are three textures in the geometry buffer, Geome-
tryRT Target0 to GeometryRT Target2. Target0 is fully white, Tar-
get1 is fully black and Target2 contains the diffuse texture of the
geometry, see Figure 1. Note that you can still move around and
see how that effects the geometry buffer in real time.

Start by looking at the depth buffer part of the geometry buffer,
which is GeometryRT Target0. The default rendering should re-
sult in white. Open deferred.cpp and find the function RCUpdate.
Where it says Pass 1, look at the code that renders the geometry
to the geometry buffer. This loops through all the geometry in the
scene, and renders it using the GeometryBuffer.vs and Geometry-
Buffer.fs shaders. However, this is rendered into the three textures
of the geometry buffer, instead of rendered to the screen.

Look in the shader GeometryBuffer.vs. This is similar to vertex
shaders that you have seen before. You calculate worldNormal,
project the vertices positions to the screen and pass through the tex-
ture coordinats. You do not have to change anything in this shader.

Now look at GeometryBuffer.fs. Here you can see where you
write the values to the different textures of the geometry buffer.
gl FragData[0] corresponds to GeometryRT Target0 and so forth.
If you look at gl FragData[2], you can see how we write the diffuse
texture. This is finished and you do not have to change this.

However, you do need to fix what you write to gl FragData[0] and
gl FragData[1]. Start with gl FragData[0]. This should contain the
depth. Here there are two problems to solve.

First, what is the depth? Look at gl FragCoord in the OpenGL
GLSL specifications. Second, the depth is a 32 bit float. The texture



Figure 2: Depth buffer, split into RGBA. To see the channel sepa-
rately, press space

Figure 3: Worldspace normals, encoded into RGB

we are trying to save it in is RGBA, with each channel containing 8-
bit values between 0.0 and 1.0. Methods for converting 8-bit RGBA
to 32-bit float and vice versa is supplied in the shaders. Look at
encodeDepth in GeometryBuffer.fs and EXTRACT DEPTH in De-
ferredSpotLight.fs. Tip, look at the result using the resource viewer,
and see how it changes when you move around. It should look sim-
ilar to Figure 2.

You then have two more values to fill in. In gl FragData[1], you
should put the normal in x, y and z. Remember that the values in
the worldNormal has a range of -1.0 to 1.0, but the textures has a
range of 0.0 to 1.0. Also, in gl FragData[1].a you should put the
specular strength, read from the specular texture. The normal part
of the buffer should look similar to Figure 3.

Render geometrybuffer:

• Write depth to gl FragData[0].rgba

• Write normal to gl FragData[1].rgb

• Write specular strength to gl FragData[1].a

Figure 4: The initial light buffer

Figure 5: The initial lighting, with diffuse texture

1.4 Adding light sources and shading

Next step is adding light sources. Four light sources are added auto-
matically in the beginning. It is easy to add more, just set a higher
amount to N LIGHTS in deferred.cpp. Start by changing in De-
ferred.cpp, where the comments say Pass 2. Here is a loop over all
the light sources.

First of, before the loop, you need to make sure you render to the
right context. You should render to the render target called light-
Buffer. So, set the render target and clear the colorbuffer of it to
0.0, 0.0, 0.0, 0.0. Important to note, do NOT clear the depthbuffer.
This should all be done outside and before the loop.

Inside the loop, you need to render the bounding volume of the light
source, a geometry called lightBounds in the code. To do this, you
need to set the camera matrices, in the same way as it is done before
rendering to the geometry buffer in Pass 1. Use the same camera.
Then call Renderer::render(), but send in a pointer to lightBounds
and use the appropriate shader, spotLightShader. After this is done,
you should be able to find the texture LightRT Target0 in the re-
source viewer, looking similar to Figure 4. The backbuffer should
look similar to Figure 5.



Now you need to implement the light calculations. These should
be in DeferredSpotLight.fs. Open it up and look at it. Right now it
only outputs a constant value of 0.2, 0.2, 0.2, 1.0. Here you should
implement Phong shading, as you did in the introductory course.
To do that you will need the position of the light source, and the
position and normal of the geometry.

The normal of the geometry is available to you, as you wrote it
to the geometry buffer. Now you need to retrieve it. As said, the
geometry buffer is a collection of fullscreen textures. We need to
locate and read the texel corresponding to the current pixel. To
calculate the texture coordinates, look at gl FragCoord again. What
does the x and y components contain? We also provide you with
invRes, a vec2 containing the inverse of the windows resolution.
Remember that you moved and scaled the normal to fit the textures
0.0 - 1.0 range. This needs to be undone.

You will also need the worldspace position of the pixel to shade it.
Similar to the normal, you should be able to read and extract the
depth from the depth part of the geometry buffer. You should then
be able to compose a screenspace position with the depth and per-
form the inverse projection using the ViewProjectionInverse matrix
supplied. Don’t forget to divide by w.

You will also need the world position of the light source. This
can be extracted from the light source object in Deferred.cpp and
sent into the shader by calling setValue(”LightPosition”) on light-
Bounds. The variable is already declared in the shader. You should
also send in the lights direction in the same way, extracted by call-
ing getWorldFront() on the light source.

Now, having the positions of both the light source and the geom-
etry to be shaded, and the normal. You should do a simple phong
calculation. Remember that you also have a specular term saved in
the alpha channel of the normal and specular texture. Multiply this
with the specular term of the lighting to gain visual richness.

Render light sources:

• Bind and clear render target

• Set camera resources

• Render light sources’ bounding volume

• calculate texture coordinates from screen position

• Extract normal from geometry buffer

• Extract depth from geometry buffer

• Perform inverse projection to obtain world space position

• Send in light position and light direction

• Extract specular strength from geometry buffer

• Calculate phong shading

1.5 Falloff and composition

To get a nice, correct lighting the light should have a falloff. The
distance falloff is based on the square of the distance between the
geometry and the light source. Similarly, as we are using a spot-
light, it should have an angular falloff, depending upon the angle
between direction from the light source to the geometry and the di-
rection of the light. This is dependant upon the type of spotlight
(reflector behind the bulb, etc.) so there is no right way of doing it.
Implement a solution and make sure it reaches zero before 45◦.

As the loop iterates over the light sources, their individual attibution
is added by using an accumulative blend mode. This is done for
you.

Figure 6: Lighting of one light source

After this, the result should look similar to Figure 6.

Fallof and composition:

• Calculate distance falloff

• Calculate angular falloff

• Composite light using phong shading, falloffs and
LightIntensity and LightColor

2 Shadow Maps

Looking at the result, only one thing is missing, shadows. For this
lab we are using the technique called shadow maps. Shadowmaps
work by rendering a depthmap from the point of view of the ligh-
source, e.g. the depth values of the surfaces hit by light from that
light source.

2.1 Rendering the shadow map

First off, you need to render the shadow map. Start of by working
in Deferred.cpp. Inside the loop, after the position and rotation of
the light source has been updated we need to change to the shadow
map render target, shadowMap. This must be done before setting up
and rendering the lights bounding volume to the light buffer. This
is done in the same way as the you previously set the light buffer
render target before the loop. So, set the render target and clear
both the color and the depth. Color should be 0.0, 0.0, 0.0, 0.0 and
the depth should be 1.0.

After the render target is setup and cleared you need to render to
it. Start off by setting up the camera. Here you need to take the
shadow camera and attach it to the light source wiht attachChild().
After that you need to use the camera to set the correct camera
matrices to the renderer.

After that, all you need to do is to render all the geometry in the
geometrylist to the shadow map, similar to when you rendered it to
the geometry buffer. However, you should render it with a special
shader called sBufferShader.

Then comes an important part. You need to extract the viewpro-
jectionmatrix from the shadow camera, to be able to later perform
the same projection within the spotlight shader. The camera has a



Figure 7: Lighting of one light source, with shadows

Figure 8: Lighting of one light source, with closup of the shadows

method call for this. This matrix needs to be sent into the spotlight
shader. A suitable variable is declared in DeferredSpotLight.fs.

After this you need to detach the shadowCamera to be able to attach
it to another light source. This must all be done before rebinding
the light buffer render target and rendering the bounding volume of
the light.

Now open the fragmentshader for writing the shadow map. It is
ShadowBuffer.fs. In this, the final color is set to 1.0, 1.0, 1.0, 1.0.
It should contain the depth, encoded in exactly the same way as in
the geometry buffer.

If all this is done correctly, you should be able to look at
the result using the resource viewer. The shadow map, called
ShadewRT Target0. It should look similar to the depthbuffer part of
the geometry buffer, in Figure 2, however it should have a continous
rotation, and not react to the controls.

Rendering the shadow map:

• Bind and clear shadow rendertarget

• Attach shadow camera to lightsource

Figure 9: Lighting of one light source, with PCF-filtered shadows

• Set camera matrices to renderer

• Render geometry to shadow map

• Extraxt viewprojection matrix from shadow camera

• Detach the shadow camera from light source

• Bind, but do not clear, the light buffer render target

• Encode and write depth in fragment shader

2.2 Using the shadow map

Now, while rendering the light from a light source, we can use the
shadow map to check if a certain pixel is in shadow. Go back to the
spotlight shader. To determine if a pixel is in shadow, use the matrix
called shadowViewProjection to see what texel of the shadow map
the pixel projects into by performing the projection. Don’t forget to
divide by w. By doing the projection, you also calculate the depth
of the fragment, in the projectionspace of the shadow map camera.
This should be compared to the depth read from the shadow map at
the projected position to determine if the surface is hit by light from
the light source at this depth. Remember that the projected values
is in the range -1.0 - 1.0, the depth in the shadow map is between
0.0 - 1.0 and texture coordinates should be between 0.0 and 1.0.

The result of this comparison should be used to determine if any
light should be added at all. The result should look similar to
Figure7. However, if you look closer, it looks like Figure 8. Which
brings us to Percentage Closer Filtering.

Using the shadow map:

• Project world space position using the shadow cameras view-
projection matrix

• Calculate the depths

• Compare and adjust the light

2.3 Percentage Closer Filtering

To reduce the blockiness of the shadows, we are going to implement
a technique called Percentage Closer Filtering or PCF. This is done
by basically doing more lookups in the shadow map, and weight-
ing the results together. To do this, implement a sampling scheme
around the projected position of the fragment. The sampling can be



Figure 10: Lighting of one light source, with closup of the PCF-
filtered shadows

Figure 11: Final solution

as simple as a double for-loop doing regular grid sampling. Com-
pare each read and extracted depth with the same calculated depth
and weigh the results together. The result should look as Figures 9
and 10, the final scene should look like Figure 11.

Percentage Closer Filtering:

• Sample the shadow map at several positions

• Compare the depths

• Weight the results together and adjust the light

3 Voluntary part: Normal maps

Now, to make the rendering even better looking. This part is volun-
tary, and not required to pass the assignment.

In the introductory course, you implemented a method called bump
mapping. This is a similar technic for adding details by using a
texture to alter the normal of the surface. If you flip through the
textures you see several textures that are mostly purple, with green
and red streaks. These are normal maps, where each pixel is a nor-

Figure 12: Worldspace normals, using normal maps, encoded into
RGB

mal, encoded in a similar way to how you encoded your normals in
the geometry buffer. However, different from your normals, these
normals are not expressed in world space, but in a space called
tangent space. This is a 3D-space aligned with the normal and
the directions of the texture coordinate space. Using a 3x3 matrix
representing this space, you can transform the encoded normal to
worldSpace, which adds a lot of detail to the shading of the scene.

This is done before writing the normal to the geometry buffer in Ge-
ometryBuffer.fs. Instead of just normalizing the wordNormal and
changing the range of it, use the supplied worldTangent, worldBi-
normal and worldNormal to create a 3x3 matrix, transforming from
tangent space to world space. Look at glsls’ mat3 constructor tak-
ing three vec3s as arguments. Use the created matrix to transform
the normal read from the normal map. Don’t forget to normalize
and encode it in a range suitable for writing to the normal texture.

The normal buffer should go from looking like Figure 3 to Figure
12.

The final result, with details added by the normal maps should look
like Figure 13.

Normal maps:

• Setup tangent space

• Read normal from normal map

• Transform normal to world space

• Write the transformed normal to geometry buffer



Figure 13: Final solution. Lower left without normal maps. Upper
right with normal maps.


