

EDAN30 Photorealistic Computer Graphics

Seminar 4

Progressive Photon Mapping

Rasmus Barringer, PhD student (rasmus@cs.lth.se)

Motivation

Capture all detail in caustics.

Incorrect caustics

- Cannot find direct light path.
- Only, indirect illumination contributes.

Progressive Photon Mapping

- Reversed direction.
- Trace rays ("photons") from the light source to the ground behind the sphere.

Progressive Photon Mapping

- Reversed direction.
- Trace rays ("photons") from the light source to the ground behind the sphere.

1st pass:

- Forward trace from eye.
- Register diffuse surface hits.

1st pass:

- Forward trace from eye.
- Register diffuse surface hits.

1st pass:

- Forward trace from eye.
- Register diffuse surface hits.

2nd pass:

- Send photons from light source.
- Register photon bounces near hit points.

2nd pass:

Send photons from light source.

2nd pass:

Send photons from light source.

- Repeat 2nd pass multiple times.
- Continue until image quality is sufficient.

Direct illumination

 Calculate and store direct illumination at each hit point during 1st pass.

– Reduced variance!

Direct illumination

- Need to alter 2nd pass.
 - Don't register the first bounce of a photon!

Photon

- Packet of energy.
- Photon power is described using flux:

$$\Phi_p$$

 Bounces around until hitting the background or terminated using Russian Roulette.

Light source

- Point light with intensity I.
- Emits photons in random directions.
- Photon flux:

$$\Phi_p = 4\pi I$$

 Photon density automatically attenuates with distance².

- When a photon hits a diffuse surface, it scatters in a random direction.
- The flux after a diffuse scatter is given by:

$$\frac{f_r(x, \Psi_p \leftrightarrow \Theta)\Phi_p(x \leftarrow \Psi_p)cos(N_x, \Theta)}{p(\Theta)}$$

?

$$\frac{f_r(x, \Psi_p \leftrightarrow \Theta)\Phi_p(x \leftarrow \Psi_p)cos(N_x, \Theta)}{p(\Theta)}$$

$$L(x \to \Theta) = f_r(x, \Psi_p \leftrightarrow \Theta) L_p(x \leftarrow \Psi_p) cos(N_x, \Psi_p)$$

$$\frac{L(x \to \Theta)}{x} \underbrace{L_p(x \leftarrow \Psi_p)}_{x}$$

$$L = \frac{\mathrm{d}^2 \Phi}{\mathrm{d}\omega \mathrm{d}A \cdot \cos(N, \Psi)}$$

$$\Phi(x \to \Theta) = f_r(x, \Psi_p \leftrightarrow \Theta) \Phi_p(x \leftarrow \Psi_p) cos(N_x, \Theta)$$

$$\frac{\Phi(x \to \Theta)}{x} \underbrace{N_x} \underbrace{\Phi_p(x \leftarrow \Psi_p)}_{x}$$

$$\int_{\Omega} \Phi(x \to \Theta) dw_{\Theta} = \int_{\Omega} f_r(x, \Psi_p \leftrightarrow \Theta) \Phi_p(x \leftarrow \Psi_p) cos(N_x, \Theta) dw_{\Theta}$$

$$\int_{\Omega} \Phi(x \to \Theta) \, \mathrm{d}w_{\Theta} \qquad \qquad \Phi_p(x \leftarrow \Psi_p)$$

$$\int_{\Omega} \Phi(x \to \Theta) dw_{\Theta} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f_r(x, \Psi_p \leftrightarrow \Theta_i) \Phi_p(x \leftarrow \Psi_p) cos(N_x, \Theta_i)}{p(\Theta_i)}$$

$$\int_{\Omega} \Phi(x \to \Theta) \, \mathrm{d}w_{\Theta} \qquad \qquad \Phi_p(x \leftarrow \Psi_p)$$

$$\int_{\Omega} \Phi(x \to \Theta) dw_{\Theta} \approx \frac{f_r(x, \Psi_p \leftrightarrow \Theta) \Phi_p(x \leftarrow \Psi_p) cos(N_x, \Theta)}{p(\Theta)}$$

- Sphere with radius *r*.
- Collects photon bounces.

 Ignore bounces at surfaces facing the normal of the hit point.


```
struct Hitpoint {
    Intersection is;
    int pixelX, pixelY;
                           Owner pixel
    float pixelWeight;
    float radius;
    Color directIllumination;
    float photonCount;
                          Photon statistics
    int newPhotonCount; |-
    Color totalFlux;
};
```



```
\label{eq:hit.newPhotonCount} $$ += 1 $$ hit.totalFlux += \Phi_p \cdot hit.is.mMaterial->evalBRDF ( hit.is , -\Psi_p) $$
```


 A hit point contributes the following illumination to the "owner" pixel.

```
(totalFlux / (n_{total} \cdot \pi \text{ radius}^2) + \text{directIllumination}) \cdot \text{pixelWeight}
```

Bias?

- Large sample spheres will result in bias!
 - Illumination is "blurred".
- Solved by reducing the radius of each sample sphere after each photon iteration.
 - Amount of reduction depends on the number of photons received.

Bias?

```
A = \texttt{hit.photonCount} + \texttt{hit.newPhotonCount} \\ B = \texttt{hit.photonCount} + \alpha \cdot \texttt{hit.newPhotonCount} \\ \texttt{hit.radius} *= \sqrt{\frac{B}{A}} \\ \texttt{hit.totalFlux} *= \frac{B}{A} \\ \texttt{hit.photonCount} = B
```

hit.newPhotonCount = 0

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

- Perform Whitted style reflection and refraction.
- Add hit points at diffuse surfaces.

2nd pass:

- Randomize the path of each photon.
- Use russian roulette to choose between:
 - Reflection.
 - Refraction.
 - Diffuse scatter.
 - Absorption.

Example

- Radius reduction: $\alpha = 0.7$
- 100 000 photons/iteration

Water

The end

Progressive Photon Mapping

http://graphics.ucsd.edu/~henrik/papers/progressive_photon_mapping/