

EDAN30 Photorealistic Computer Graphics

Seminar 3

Path Tracing

Rasmus Barringer, PhD student (rasmus@cs.lth.se)

Goal

Render realistic lighting!

$$L(x \to \Theta) = L_{direct}(x \to \Theta) + L_{indirect}(x \to \Theta)$$

$$L(x \to \Theta) = L_{direct}(x \to \Theta) + L_{indirect}(x \to \Theta)$$
 Local illumination Global illumination

$$L_{indirect}(x \to \Theta) = \int_{\Omega} L_{in}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi) d\omega_{\Psi}$$

$$L_{direct}(x \to \Theta) = L_{direct}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi)$$

$$L_{indirect}(x \to \Theta) = \int_{\Omega} L_{in}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi) d\omega_{\Psi}$$

- Integral over the hemisphere!
- Need to use Monte Carlo sampling.

$$L_{indirect}(x \to \Theta) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{L_{in}(x \leftarrow \Psi_i) f_r(x, \Psi_i \leftrightarrow \Theta) cos(N_x, \Psi_i)}{p(\Psi_i)}$$

$$L_{indirect}(x \to \Theta) = \int_{\Omega} L_{in}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi) d\omega_{\Psi}$$
$$L_{direct}(x \to \Theta) = L_{direct}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi)$$

$$L_{indirect}(x \to \Theta) = \int_{\Omega} L_{in}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi) d\omega_{\Psi}$$

$$L_{direct}(x \to \Theta) = L_{direct}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi)$$

Each indirect ray is...

$$L_{indirect}(x \to \Theta) = \int_{\Omega} L_{in}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi) d\omega_{\Psi}$$

$$L_{direct}(x \to \Theta) = L_{direct}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi)$$

...recursive!

$$L_{direct}(x \leftarrow \Psi)$$
 $L(x
ightarrow \Theta)$ $L_{in}(x \leftarrow \Psi)$

Path tracing

- Want to avoid n^k rays after k bounces (each ray contributing less to the image).
- In path tracing, we trace n rays through each pixel and randomize its path.
- Sample indirect illumination in a single random direction. (x,y)
 - Noisy with few samples per pixel!

Random direction

- Rejection sampling:
 - Sample uniformly in the unit cube.
 - Discard samples outside the sphere.

Random direction

- Normalize to get samples on the sphere.
- Discard samples behind the normal.

Importance sampling

- We can do smarter sampling to increase efficiency (reduce noise).
- In the assignment you will do cosine-weighted importance sampling.

Cosine weighted sampling

Rendering equation:

$$L_{indirect}(x \to \Theta) = \int_{\Omega} L_{in}(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) cos(N_x, \Psi) d\omega_{\Psi}$$

Point sampled rendering equation:

$$L_{indirect}(x \to \Theta) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{L_{in}(x \leftarrow \Psi_i) f_r(x, \Psi_i \leftrightarrow \Theta) cos(N_x, \Psi_i)}{p(\Psi_i)}$$

Cosine weighted sampling

Point sampled rendering equation:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{L_{in}(x \leftarrow \Psi_i) f_r(x, \Psi_i \leftrightarrow \Theta) cos(N_x, \Psi_i)}{p(\Psi_i)}$$

Get equal contribution of each ray by setting :

$$p(\Psi_i) = k \cdot cos(N_x, \Psi_i)$$

Eliminates the cosine term!

Cosine weighted sampling

Cumulative Distribution Function:

$$F(\theta, \phi) = \int_0^{\phi} \int_0^{\theta} p(\theta, \phi) \sin(\theta) d\theta d\phi = \frac{\phi}{2\pi} (1 - \cos^2(\theta))$$

• Separate:

• Solve:

$$F_{\theta} = 1 - \cos^{2}(\theta)$$

$$F_{\phi} = \frac{\phi}{2\pi}$$

$$\theta = \cos^{-1}\sqrt{1 - u_{\theta}}$$

$$\phi = 2\pi u_{\phi}$$

How many indirect recursions/bounces?

Termination criterion

- Fixed depth termination: biased.
 - Image wont converge to correct solution with more samples per pixel.
- Russian roulette termination: unbiased.
 - Image will eventually be correct.
- We don't want bias!

Russian roulette

- Noise instead of bias!
- No fixed depth cut-off.
- Absorption (termination) probability α .
- If not absorbed:
 - Multiply contribution with $1/(1-\alpha)$.

Russian roulette

Example:

- Trace 1000 rays against white background.
- Absorption probability 0.1.
- 0.1*1000 rays get absorbed (black).
- 0.9*1000 rays lives (white).

$$color = \frac{1}{n}(0.1 \cdot 1000 \cdot (0, 0, 0) + \frac{0.9 \cdot 1000}{1 - 0.1} \cdot (1, 1, 1))$$
$$color = (1, 1, 1)$$

Russian roulette

- Good to force a few recursions before starting roulette.
 - Reduces noise!

Reflection and refraction

- Almost like previous assignments.
- Reflectivity, R, and Transparency, T.
 - -R+T < 1
- Use russian roulette to pick one:
 - Reflection (probability R).
 - Refraction (probability T).
 - Direct and indirect illumination (probability 1-R-T).

Area lights

- There are no point lights in real life.
- Area lights provides softer shadows.
- Easy to implement.
 - Sphere with emissive material!
- The light only contributes to the image if a ray actually hits the light source.
 - Size matters.

Sky light

- Remove the walls and roof.
- Use the background as light source.

Image based lighting

- Instead of background color use light probe.
- More interesting images.
- Makes the objects blend into the environment.

Creating a light probe

- Light probes are often created by photographing a real world scene.
 - Can also be pre rendered.
- Two pictures of a mirrored ball at ninety degrees of separation.
- Spherically encoded.
 - Center of the image is straight forward, the circumference of the image is straight backwards.

Examples

From www.pauldebevec.com/Probes

Portable Float Map

- To store a light probe we use PFM.
 - We used the more advanced OpenEXR format last year but it was difficult to compile at some platforms.
- Basically a uncompressed image format where each color channel is 32-bit float.
 - High Dynamic Range!

Loading and sampling a lightprobe

- Support in the framework:
 - LightProbe(const std::string& filename);
- Sample radiance in direction:
 - Color getRadiance(const Vector3D& d) const;
- Use for rays that misses geometry (hits the background).
 - Automatically becomes a light source!

Multicore support

- Distribute work among multiple CPU cores.
- Ray tracing can generally compute each ray independent of each other.
 - Lends itself well to parallelization.
- More suitable to distribute tiles or rows to avoid scheduling overhead.

OpenMP

Parallel computelmage:

```
int lines = 0;
#pragma omp parallel for
for (int y = 0; y < height; y++) {
   for (int x = 0; x < width; x++) {
      Color c = tracePixel(x, y);
      mImage -> setPixel(x, y, c);
   #pragma omp critical
      lines++;
      if (lines % (height/20) == 0 || lines == height)
          std::cout << (100*lines/height) << "%" << std::endl;
```

The end