EDAN30 Photorealistic Computer Graphics

Seminar 3

Path Tracing

Rasmus Barringer, PhD student (rasmus@cs.Ith.se)



Goal

* Render realistic lighting!









Color bleeding

-

Pure indirect illumination




The rendering equation

L(ZIj — @) — Ldirect(x — @) + Lindirect(x — @)

QO

6 L(x — ©)

X




The rendering equation

L(ZIj — @) — Ldirect (3j — @) + Lindirect(x — @)

) Local illumination |

Global illumination Q

L(x — ©)

~

X




The rendering equation

Lindirect(x — ©) = / Lin(x < V) f.(x, ¥ < O)cos(N,, V) dwy
Q

Lgirect(x = O) = Lgjrect(x — V) fr(z, ¥ <> O)cos(N,, V)

QO

L(x — ©)

~

X




The rendering equation

Lindirect(x — ©) = / Lin(x < V) f.(x, ¥ < O)cos(N,, V) dwy
Q

* Integral over the hemisphere!
* Need to use Monte Carlo sampling.

1 <= Lin(x < W) fr(z, ¥; <> O)cos(N,, ;)
Lindirect(x — @) ~ E Z p(qj)
i=1 ¢




The rendering equation

Lindirect(x — ©) = / Lin(z < U) fr(x,V < O)cos(N;, V) dwy
Q

Lgirect(x = O) = Lgjrect(x — V) fr(z, ¥ <> O)cos(N,, V)




The rendering equation

Lindirect(x — ©) = / Lin(x < V) f.(x, ¥ < O)cos(N,, V) dwy
Q

Lgirect(x = O) = Lgjrect(x — V) fr(z, ¥ <> O)cos(N,, V)

Each indirect ray is...

Ldirect ($ . \Ij)




The rendering equation

Lindirect(x — ©) = / Lin(x < V) f.(x, ¥ < O)cos(N,, V) dwy
Q

Lgirect(x = O) = Lgjrect(x — V) fr(z, ¥ <> O)cos(N,, V)

...recursive!

Ldi'rect (37 — WV




Path tracing

* Want to avoid n* rays after k bounces (each
ray contributing less to the image).

* |n path tracing, we trace n rays through each
pixel and randomize its path.

 Sample indirect illumination in a single
random direction. (xy)

— Noisy with few samples per pixel!

(x+1,y+1)



Random direction

* Rejection sampling:
— Sample uniformly in the unit cube.
— Discard samples outside the sphere.

(-1,-1,-1) (-1,-1,-1)

I I

'@ |

: O ] @ ) O

I. . |. .

I I

' t

I I B

. @ ® . @ ®

I |

' @ o , © 0
. | ' [




Random direction

* Normalize to get samples on the sphere.
* Discard samples behind the normal.




Importance sampling

 We can do smarter sampling to increase
efficiency (reduce noise).

* |n the assignment you will do cosine-weighted
importance sampling.




Cosine weighted sampling

* Rendering equation:

Lindirect(x — ©) = / Lin(x < V) f.(x, ¥ < O)cos(N,, V) dwy
Q

* Point sampled rendering equation:

1 <~ Lin(z < ) fr(z,U; < O)cos(N,, ;)
L'L'ndi’rect(aj — @) ~ E Z p(\:[j)
i=1 ’




Cosine weighted sampling

* Point sampled rendering equation:

1 i Lin(x < V) fr(x,¥; <> O)cos(N,, V,)
e p(¥s)
* Get equal contribution of each ray by setting :

p(V;) =k - cos(N., ;)

e Eliminates the cosine term!



Cosine weighted sampling

e Cumulative Distribution Function:

b 10
F(0,¢) = ./0/0 (0, ¢)sin(0)dOdep = %(1 — cos*(0))

e Separate: * Solve:
Fy = 1—cos*(6

f 5 cos”(0) 0 = cos 1 — uy
Fqb — ¢ — 27Tu¢

27



How many indirect recursions/
bounces?


















Termination criterion

* Fixed depth termination: biased.

— Image wont converge to correct solution with
more samples per pixel.

e Russian roulette termination: unbiased.

— Image will eventually be correct.

e We don’t want bias!



Russian roulette

Noise instead of bias!
No fixed depth cut-off.
Absorption (termination) probability a.

If not absorbed:
— Multiply contribution with 1/(1-a).



Russian roulette

Example:
* Trace 1000 rays against white background.
* Absorption probability 0.1.
e 0.1*1000 rays get absorbed (black).
e 0.9%1000 rays lives (white).

1 0.9 - 1000
lor = =(0.1-1000 -
color n(O 000 - (0,0,0) + 01

color = (1,1,1)

- (1,1,1))









Russian roulette

* Good to force a few recursions before starting
roulette.

— Reduces noise!






Reflection and refraction

* Almost like previous assignments.
» Reflectivity, R, and Transparency, T.
—R+T <1
e Use russian roulette to pick one:
— Reflection (probability R).
— Refraction (probability T).
— Direct and indirect illumination (probability 1-R-T).






Incorrect
caustics

:(




Area lights

There are no point lights in real life.
Area lights provides softer shadows.
Easy to implement.

— Sphere with emissive material!

The light only contributes to the image if a ray
actually hits the light source.

— Size matters.






SRR
Correct Tty Soft shadows
caustics!




Sky light

 Remove the walls and roof.
* Use the background as light source.






Image based lighting

* |nstead of background color — use light probe.
* More interesting images.

 Makes the objects blend into the
environment.



Creating a light probe

* Light probes are often created by
photographing a real world scene.

— Can also be pre rendered.

* Two pictures of a mirrored ball at ninety
degrees of separation.

* Spherically encoded.

— Center of the image is straight forward, the
circumference of the image is straight backwards.



Examples

From www.pauldebevec.com/Probes



Portable Float Map

 To store a light probe we use PFM.

— We used the more advanced OpenEXR format last
yvear but it was difficult to compile at some
platforms.

e Basically a uncompressed image format where
each color channel is 32-bit float.
— High Dynamic Range!






Loading and sampling a lightprobe

e Support in the framework:
— LightProbe(const std::string& filename);

 Sample radiance in direction:

— Color getRadiance(const Vector3D& d) const;

e Use for rays that misses geometry (hits the
background).

— Automatically becomes a light source!









Multicore support

* Distribute work among multiple CPU cores.

e Ray tracing can generally compute each ray
independent of each other.

— Lends itself well to parallelization.

* More suitable to distribute tiles or rows to
avoid scheduling overhead.




OpenMP

* Parallel computelmage:

int lines = 0;

#pragma omp parallel for
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
Color ¢ = tracePixel (x,V):
mImage—->setPixel (x,y,C);
}
#pragma omp critical

{

lines++;

if (lines % (height/20) == | |

lines == height)

std::cout << (100*lines/height) << ”%" << std::endl;



The end



