_—
Q ; EDAN3O Photorealistic Computer Graphics

Seminar 2, 2012

Bounding Volume Hierarchy

Magnus Andersson, PhD studéntagnusa@cs.lth.se)

This seminar

A We want to go from hundreds of triangles to
thousands(or millions!)

A This assignment hdsw, but tricky, tasks.

Results

256x256 pixels, 3x3 samples 512x512 pixels, 5x5 samples

Elephants!

Overview

<<Raytracer> <<RayAccelerator>

<<Node>>

PointLight <<Primitive>> <dntersectable>

<<Material>> Triangle

Overview

<<Raytracer> ListAccelerator

<<Node>>

PointLight <<Primitive>> <dntersectable>

<<Material>> Triangle

Overview

<<Raytracer>

<<Node>>

PointLight <<Primitive>> <dntersectable>

<<Material>> Triangle

kD'tree VS . BV HS . B I HVS. OcTreers.uniform Grids. ..

A What acceleration structure should you
choose??

kD'tree VS . BV HS . B I HVS. OcTreers.uniform Grids. ..

A What acceleration structure should you
choose??

AStill an area of act |
Il n fashi on...

kD'tree VS . BV HS . B I HVS. OcTreers.uniform Grids. ..

A What acceleration structure should you
choose??

AStill an area of act |
Il n fashi on...

A Short answer = It depends on your application
I Ray tracing (primary rays only?

I Collision detection?

I Animated?

I Memory/speed tradeoffs

I Scene dependent

I Implementation dependent

|

kD'tree VS . BV HS . B I HVS. OcTreers.uniform Grids. ..

A What acceleration structure should you
choose??

AStill an area of act]
Il n fashi on..
A Short answer = It depends on your application

A 2dzQftf FTAYR @2dz2NARSE T
different alternatives before settling on a
sultable structure

kD-tree vs. BVH

A kD-tree (50s)

I Implementation from assignment/o years ago.

A BVH (49s)
i ¢CKAA &SI NXQa

kD-tree vs. BVH

A kD-tree (50s)

I Implementation from assignments two years ago.

A BVH (49s)
i ¢CKAA @SIFNXQRaA NEBEFTSN

&
<
@]
0p))
>
_<
—
=

+ The BVH will be useful for other
purposes in a later lab

Assignment 2

A Construction

A Intersection

A Surface Area Heuristic (Optional)
A Further Optimizations (Optional)

Assignment 2

A Construction

Construction

A You will need to create a new claB¥HAccelerator
which inherits from<<RayAccelerator>>

A For this assignment you must implement
void build(conststd::vectordntersectable*> &objects;

A..and you will probably

void build_recursive(it left_index,int right_index, AABB box,
BVHNode *nodent depth);

Construction, brief overview

»
4‘ 7\
Ly

We begin with a bunch of Intersectables

Construction , brief overview

=

Find bounding box centroids of all intersectables

Construction , brief overview

=

Find theworld bounding box and create a root node

Construction , brief overview

>

£ ‘AV‘

h

»

Use some splitting criteria to find a sensible division of
the elements into new child nodes

Construction , brief overview

\ >

4

7y

h

»

Continue to split recursively until each node contains
onlyoneor a fewelements

Construction , brief overview
|

Now, when shooting rays
Intersectables anymore!

Construction

ASo what is a sensible splitting criteria?

AWhy not usemid-points p| i t t i ng
easy to understand and implement

I Works well when primitives are fairly evenly
distributed

Construction

ASo what is a sensible splitting criteria?
AWhy not usemid-points p| i t t i ng
easy to understand and implement

I Works well when primitives are fairly evenly
distributed

A You can try to come up with a different criteria
If you want to

i | tried splitting on the mean and median. Both
were outperformed by migoint splitting

Construction

>
4‘ 7‘
A

<€ 1 >

Find the mid point of the largest axis

Construction

4d o PP
.

r .
7 LH—>

<—o—&—o—|

Sortthe bounding boxentroidsin the largest axis
direction. Then split into &ft and aright side

>

Construction
‘ |

14" ™
I <

Lather, rinse and repeat. Terminate when a node contains
few intersectables (I used 4, which worked well)

Construction

1

o

<

T >

There Is a hazard in getting mitersectableson one
side—we could end up with empty nodes!

Construction

N

h

If this happensyou can, for example revert to median
or mean splitting hedian split is depicted aboye

Construction

Now that you know the general concepts of a BVH, we

will discusan-depthhow we keep track of our nodes
and intersectables throughout the contruction process.

Node class

A BVH node class (inner clasBafHAcceleratdr

classBVHNode {
private:
AABBbbox
bool leaf;
unsignednt n_objs
unsignednt index // if leaf == false: indeto left childnode,
Il else if leaf == true: index to firdhtersectablen Objsvector
public:
void setAABBAABB &bbox) { ...}
void makelLealf{nsignednt index_,unsigned inin_objs) {...}
void makeNode(nsignednt left_index , unsigned innh_obj9 {...}
/l n_objsin makeNodes for debug purposes only, and may be omitted later c

boolisLeaf) {return leaf;}

unsignednt getindeX) {return index; }
unsignednt getNObjs() {eturn n_objs;}
AABB&getAABB() feturn bbox;};

Construction

Incoming intersectables objects

» 7‘
L,

In the build()-function we get a list of unsorteltersectable
pointers, which we copy to a local vector. At the same time we
calculate theworld bounding box.

BVH Intersectable listObjs

Construction

‘ NodeList
Set up aNodeLliswector, which will hold our nodes. (We also

happen to know that the number of nodes needed will be at
most2n ¢ 1 nodes,if the leaf nodes contain 1 element each).

BVH Intersectable listObjs

Construction

n_nodes

* NodeList

.\4

root

4 o P~
N

- —

left_index right_index
Setleft_index= 0,right_index=0Dbjs.sizf) andn_nodes= 1.

Set the world bounding box to the root node usSBWiNodesetAABRbOX)
Then start building recursively.

Construction

n_nodes

W NodeList
C

A
N N

First, check if the number afitersectabless fewer
t han the threshold (Il et :

Objs
t /

Construction

n_nodes

W NodeList
C

‘ » node
A ' This is now sorted! _
I Objs
€ left_index right_index

Find largest dimensiod and sort the elements in that
dimension.

Construction

n_nodes

4‘ 7\
&)

>

“ I

W NodeList
C
node
split_index
¢ Objs
left_index right_index

Find thesplit_indexwhere the mid point divides the

primitives in deft andright side

Construction

n_nodes

4‘ 7\
&)

>

. l

W NodeList
C
node
split_index
¢ Objs
left_index right_index

Find thesplit_indexwhere the mid point divides the

primitives in deft andright side

Construction

n_nodes

4‘ 7\
&)

>

. l

W NodeList
C
node
split_index
¢ Objs
left_index right_index

Find thesplit_indexwhere the mid point divides the

primitives in deft andright side

Construction

n_nodes

4‘ 7\
i

>

“ I

W NodeList
C
node
split_index
¢ Objs
left_index right_index

Find thesplit_indexwhere the mid point divides the

primitives in deft andright side

Construction

n_nodes

W NodeList
C

J »
4 4”~N
N Y

Find thesplit_indexwhere the mid point divides the
primitives in deft andright side

Success!

split_index

¢ Objs

Construction

W NodeList

Success!

split_index

Al N s

(We could have used binary search)

Construction

‘ g
4 7‘
-

< ! Tﬁ

nod

NodelList

left

right

split_index

|
4[s [V A~ N[D]

Objs

/

right_index

Allocate two new nodedé€ft andright) from theNodeList The
left node will have inder_nodesand the right onen_nodes+ 1

Construction

n_nodes

4 o P<
a0

. I

BVHNodemakeNodeli _nodes.
(The index to the right node is alwaysnodes+ 1)

left_index

nitiate node (which is currently the root node) with

W NodeList
- |
»
left right
split_index
¢ Objs

/

right_index

Construction

W NodeList

4 ‘AV >,

h

split_index

Voo,

left_index right_index

Calculate the bounding boxes fieft andright and
assign them to the two newly created nodes

Construction

W NodeList

split_index

S » =
4 AV‘

h

t

left_index right_index

Call thebuild_recursivé)-function for theleft and then
the right node.

n_nodes
W NodeList

I
>
left right
‘ split_index
¢ Objs

Construction
’ RN | [[D
4 /

left_index right_index

Be sure to pass the corre@bjsvector indicesto the left andright
nodes. Theeft node is now responsible fgleft_index split_index
and theright node for[split_indexright_index.

Construction

n_nodes
W NodeList
(I
1 I v
‘ node
&
i v

(Sorted) | Obis

S S 1

left_index right_index

Processing of the |l eft nq

Construction

n_nodes

Illll“iw

v split_index

y
kNl

v left_|] right

NodelList

Objs

)

left_index right_index

Construction

n_nodes

NodelList

o =N |
v
—> left right
/a

t

left_index

SakiE
v

Objs

)

right_index

Construction

k S

Finally we have only 2 primitives in t

(right_indexc left_index <= 2)

NodelList

Objs

1

left_index

right_index

ne nodade.

Construction

n_nodes

W NodeList
o
‘ -
. v node
<o
Objs
N i
1

left_index right_index

We Initiate the current node as a leaf using
void BVHNode::makelLeddft index, right_indexc left_index);

Construction

A

>

Y

h

n_nodes
W NodeList

&« D\
e

Thi s

S

wh at

W e

LLLL

end up

Construction, Pseudo code

Setup

void build(conststd::vector<intersectabl&> &objecty
Create new vector fointersectablgointer copies
Create new vector for the nodes
CreateRoot node
worldBox= AABB); /I world bounding box
For eachntersectabléi] in objects
I worldBox.includé@ntersectablgi] bounding box)
I Objs.push_badktersectabléi])
EndFor
Set world bounding box to root node

build_recursive(0, Objs.size(), root, 0);
The declaration wastoid build_recursive(it left_index,int right_index, BVHNod®&ode, int depth);

o To To Io I

o o o

Construction, Pseudo code

Recursion

void build_recursive(it left_index,int right_index, BVHNod&ode, int depth)
A If ((right_index—left_index) <= Threshold || ¢ther termination criteria)

Initiate current node as a leaf with primitives frodbjgleft indeX to Objqright_index

A Else

Splitintersectablesnto left andright by finding asplit_index
A Make sure that neitheleft nor right is completely empty

Calculate bounding boxes lefft andright sides

Create two new nodedeftNodeandrightNodeand assign bounding boxes
Initiate current node as an interior node witeftNodeandrightNodeas children
build_recursiv@deft_index split_index leftNode, depth + 1)
build_recursivésplit_index right_index rightNode depth + 1)

A Endlf

Construction

ASorting in C++
iI¢KAEd Aada 6KFEG L RAR |

#include<algorithm>

[/

ComparePrimitivesmp;

cmp.sort_dim= O; [[x=0,y=1,2=2
std::sort(objs.begirf) +from_index objs.begirf) +to_index cmp);

I ComparePrimitives?

Construction

ASorting in C++

classComparePrimitives {

public

bool operaton) (Intersectablera, Intersectableb) {
AABB box;
a->getAABB(box);
float ca= (box.mMax(sort_dim) + box.mMin(sort_dim)) * Q.5f
b->getAABB(box);
float cb= (box.mMax(sort_dim) + box.mMin(sort_dim)) * Q.5f
returnca < ch

}

int sort_dint

Debug Scenes

Test scenes used to verify your implementation

Non-scrambled positions Scrambled positions

Debug Scenes

Node<Primitives: 40>
Node<Primitives: 20>
Node<Primitives: 10>

Node<Primitives80>
Node<Primitives: 40>
Node<Primitives: 20>
Node<Primitives: 10>

- Node<Primitives: 5>
Node<Pr!m!tfves: 5> . o Leaf<Primitives: 3, First primitive: 40>
Leaf<Primitives: 3, First primitive: 0> Leaf<Primitives: 2, First primitive: 43>
Leaf<Primitives: 2, First primitive: 3> Node<Primitives: 5>
Node<Primitives: 5> Leaf<Primitives: 3, First primitive: 45>
Leaf<Primitives: 3, First primitive: 5> Leaf<Primitives: 2, First primitive: 48>
Leaf<Primitives: 2, First primitive: 8> Node<Pr|r_n|t_|\{es: _10>
o Node<Primitives: 5>
Node<Primitives: 10> Leaf<Primitives: 3, First primitive: 50>
Node<Primitives: 5> Leaf<Primitives: 2, First primitive: 53>
Leaf<Primitives: 3, First primitive: 10> Node<Primitives: 5>
Leaf<Primitives: 2, First primitive: 13> Il:ea;<Er?m?t?ves: g E?rst primitive: 2?
- eaf<Primitives: 2, First primitive: 58>
Node<Pr!m!tfves: 5> . o Node<Primitives: 20> P
Leaf<Primitives: 3, First primitive: 15> Node<Primitives: 10>
Leaf<Primitives: 2, First primitive: 18> Node<Primitives: 5>
Node<Primitives: 20> Leaf<Primitives: 3, First primitive: 60>
Node<Primitives: 10> Ledaf<Er?mﬁ?ves: g First primitive: 63>
- Node<Primitives: 5>
Node<Pr!m!t?ves: 5> . o Leaf<Primitives: 3, First primitive: 65>
Leaf<Primitives: 3, First primitive: 20> Leaf<Primitives: 2, First primitive: 68>
Leaf<Primitives: 2, First primitive: 23> Node<Primitives: 10>
Node<Primitives: 5> Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 25> Leaf<Primitives: 3, First primitive: 70>
Leaf<Primitives: 2, First primitive: 28> Leaf<Pr!m!t!vesE 2, First primitive: 73>
o Node<Primitives: 5>
Node<Primitives: 10> Leaf<Primitives: 3, First primitive: 75>
Node<Primitives: 5> Leaf<Primitives: 2, First primitive: 78>
Leaf<Primitives: 3, First primitive: 30>
Leaf<Primitives: 2, First primitive: 33>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 35>
Leaf<Primitives: 2, First primitive: 38

Node<Primitives: 80>
Node<Primitives: 40>
Node<Primitives: 21>
Node<Primitives: 8>
Leaf<Primitives: 4, First primitive: 0>
Leaf<Primitives: 4, First primitive: 4>
Node<Primitives: 13>

Debug Scenes

Node<Primitives: 40>

Node<Primitives: 19>
Node<Primitives: 6>
Leaf<Primitives: 3, First primitive: 40>
Leaf<Primitives: 3, First primitive: 43>
Node<Primitives: 13>

Node<Primitives:

Leaf<Primitives
Leaf<Primitives

Node<Primitives:

Leaf<Primitives
Leaf<Primitives

7>

. 4, First primitive: 8>
: 3, First primitive: 12>
6>

: 3, First primitive: 15>
: 3, First primitive: 18>

Node<Primitives:
Leaf<Primitives:
Leaf<Primitives:

Node<Primitives:
Leaf<Primitives:
Leaf<Primitives:

6>
4, First primitive: 46>
2, First primitive: 50>
7
4, First primitive: 52>
3, First primitive: 56>

Node<Primitives: 21>
Node<Primitives: 6>

Leaf<Primitives: 3, First primitive: 59>
Leaf<Primitives: 3, First primitive: 62>
Node<Primitives: 15>

Node<Primitives: 19>
Node<Primitives: 7>

Leaf<Primitives: 4, First primitive: 21>
Leaf<Primitives: 3, First primitive: 25>
Node<Primitives: 12>

Node<Primitives:

Leaf<Primitives
Leaf<Primitives

Node<Primitives:

Leaf<Primitives
Leaf<Primitives

6>

: 3, First primitive: 28>
: 3, First primitive: 31>
6>

. 3, First primitive: 34>
. 3, First primitive: 37

Node<Primitives:
Leaf<Primitives:
Leaf<Primitives:

Node<Primitives:
Leaf<Primitives:
Leaf<Primitives:

8>
4, First primitive: 65>
4, First primitive: 69>
7
4, First primitive: 73>
3, First primitive: 77>

Assignment 2

A Intersection

Intersection

A For this assignment you must implement

I Boolean test
bool BVHAcceleratonntersectConstRayé& ray,

I Closest hit
bool BVHAcceleratonntersectConstRay& ray, Intersection& is);

A The two functions are very similar. If you have one of
them, you can easily implement the other.

ClosestHit Intersection

>
4 V-
A >

Node Stack

Closest hit

Find closest intersection point

ClosestHit Intersection

World Bounding Box

max

Node Stack

min

Closest hit

First check if we even hit the world bounding box.
bool AABB::intersectionstRay& rfloat& tmin, float& tmax) const

Node Stack

ClosestHit Intersection

Right

L eft

Closest hit

— Q0
_

tm/

eck the two children for intersection (again using
. Y'Y A YIS KB &L (botiXbipxes were hit.

ClosestHit Intersection

Right
Left

X
S L
ﬁ / 1:max
S -7
@)

e trightO

e

%)

% t /

8 T Uefto

Put the node furthest aw:
hit parametert. Traverse the closest node

ClosestHit Intersection

L eft

Right t

max

Node Stack

t

min

Closest hit

This time we only hit one node, which happens to be a
leaf node

ClosestHit Intersection

maxX

Node Stack

min

Closest hit

Intersection test with each primitive in the leaf.
bool Intersectable:intersectConstRay& ray, Intersection& ispnst

ClosestHit Intersection

Node Stack

Closest hit

Store intersection and shorten ray.

ClosestHit Intersection

T

Node Stack

trightO

P
th

Pop the stack and recursively intersection test with the
node.

.

Closest hit

ClosestHit Intersection

A’EJ[:CTED

Node Stack

1:rightO

P
th

Optimizationg We can trivially reject the o pnodk since
its t-value is now further away than, ., of the ray.

Closest hit

.

ClosestHit Intersection

2
p
S
@)
Z
@
Try to pop the stack agalil
now 1t’s empty, which me:

ClosestHit Intersection

thtkmax

We found the closest hit with little effort!

~ Node Stack
v :

NoO Intersection

| 2

N 7‘

»

If there IS no Intersection, th€losest hiwill of course
be empty—return false

Node Stack
] :

\p

ClosestHit Intersection, Pseudo code

A LocalRay Ray,CurrentNode= Root

A ChecK.ocalRayntersection with Root (world box)
I No hit => returrfalse

A For (infinity)
I If NOTCurrentNode.isLe§))

A Intersection test with bottchild nodes
i Bothnodes hit=> Put the one furthest away on the staClurrentNode= closesthode
» continue
i Onlyone node hit =>CurrentNode= hitnode
» continue
i No Hit Do nothing (let the stacgopping code below be reached)

T Else/ Is leaf

A Foreach primitive in leaf perform intersection testing
i Intersected => updateocalRay.maxdnd storeClosestHit

I Endlf

I Pop stack until you find a node witk LocalRay.max¥>CurrentNode=p o p ' d
A Sackisempty?=> returnClosestHifno closest hit => return false, otherwise return true

A EndFor

Intersection

A Stack element

struct Stackltem {
BVHNode *ptr;
float t;

3

A Use either a Gtyle vector or C++ Stack class
I StackltenstacMAX_STACK_ DEPTH]
I Stack<Stacklten» stack;

Boolean Intersection, Pseudo code

A LocalRay Ray,CurrentNode= Root

A ChecK.ocalRayntersection with Root (world box)
I No hit => returrfalse

A For (infinity)
I If NOTCurrentNode.isLe§))

A Intersection test with bottchild nodes
i Bothnodes hit=> Putright one onthe stack.CurrentNode= left node
» GotoLOOP;
i Onlyone node hit =>CurrentNode= hitnode
» GotoLOOP;
i No Hit: Do nothing (let the stagbopping code below be reached)

T Else/ Is leaf

A For each primitive in leaf perform intersection testing
i Intersected =>eturn true;

i EndIf

I Pop stackCurrentNode=p o pnode
A Stack is empty =peturn false

A EndFor

Debug Scenes

Make these scenes

Non-scrambled positions Scrambled positions

Intersection

Elephants, without and with shadows

Without shads With shadows

Assignment 2

A Surface Area Heuristic (Optional)

Surface Area Heuristic

S(Bp) LT S(Bp) T
A c = estimated cost of traversingand its childrenl(r)
A ¢ = ~cost of performing one traversal iteration
A ¢ = ~cost of performing one intersection test
An, = number of elements in child node
A S8) = surface area of child node

A SB,) =surfacearea ofparentnode

Surface Area Heuristic

Continue to splitifCc << 1,C;

A c = estimated cost of traversingand its childrenl(r)

A ¢ = ~cost of performing one intersection test

A n, = number of elements in parent node

We stop splitting and creat

Intersect all thelntersectablesthan to split the node further.

Surface Area Heuristic
A ‘ »
4 4”7~
N <

2X

\4

The parent surface area Is passed by previous recursic
iteration.

Surface Area Heuristic

IR
A 7‘
Ly

<€ >

For each axisBegin by sorting elements. Then
calculate cost of each potential split

Surface Area Heuristic

>

c=c + g((g;)) nic; + ggg;gnwi

n=1
n="17
S@) =
s(8) = D
S6,) = 2

4

P\

h

»

<€ >

For each axisBegin by sorting elements. Then
calculate cost of each potential split

Surface Area Heuristic

>
A 7‘

»

c=c + g((g;)) nic; + ggg;gnwi

n=2
n=26
S@) =
S(B) = TR
se,) = e

h

<€ >

For each axisBegin by sorting elements. Then
calculate cost of each potential split

S(B1) S(Br)

Surface Area Heuristic
¢= T 5B, MG T 5@, ¢

> n=3
d VN
‘ S@) =

S(B) =
|

SE,) = [

h

<€ >

For each axisBegin by sorting elements. Then
calculate cost of each potential split

Surface Area Heuristic

h

»

4 ‘AV:

<€

>

c=c + g((g;)) nic; + ggg;gnwi

n=4
n=4
S@) =
s(8) = D
S6,) = 2

For each axisBegin by sorting elements. Then
calculate cost of each potential split

Surface Area Heuristic
PPN e
N

<€ >

c=c + g((g;)) nic; + ggg;gnwi

n=>5
n=3
S@) =
S(B) = TR
se,) = e

For each axisBegin by sorting elements. Then
calculate cost of each potential split

Surface Area Heuristic

c=c + g((g;)) nic; + géggnwi

n=>5
3
0) = Oip

) = [N
SI=NE !

For each axisBegin by sorting elements. Then
calculate cost of each potential split

Surface Area Heuristic

' | 2
4 ‘AV;

Keep the best split (lowes) over all three axes.
Continue splitting for as long as it pays efk(n,c;

h

Surface Area Heuristic

Can be slow for large scenes...
Optimize:
A Binned sorting

A Try only a few split planes

A Try selectively enabling/disabling SAH calculation at
different levels

A Etc, etc... ‘kr:
Y <

Results

Mid-point split

" ot ‘ff' ."’ :

512x512 pixels, 3x3 samples 512x512 pixels, 3x3 samples

Assignment 2

A Further Optimizations (Optional)

Further Optimizations (Optional)

A Take a look inside
bool AABB::intersectionstRay &rfloat &tmin, float &tmax) const

i There is one expensive computation that can be(p& Y LJdz{i S
I Loop unrollingnay help slightly...

A TheBVHNodelass takes 36 bytes (if your implementation
matches mine). This can be reduced (and more nicely alignec

A Make sure that your dftersectable>intersection functions
are optimized

A Avoid recursion and pay careful attention to inner loops
A.be crearndiverld use Googl e “ B\

I There arecotrkrér ophamdzati ons as
the scope of this course..

Further Optimizations (Optional)

Typical work distribution for a BVH

CS:EIP Symbal + Offset Timer samples
» 0x211210 BABB:intersectFast 54,09
» 0x21c6fl Triangle::intersect 9,39
» Ox212140 BvHAccelerator: intersect 8,22
» Ox21c450 Triangle::intersect 5,66
 0x211090 AABB::indude 5,32
» Ox211fb0 BvHAccelerator: intersect 5,3
» 0x21d570 WhittedTracer::trace 1,71
Q2170 Triangle::calculateMormalDifferential 1,66
> Ow21ocld Triangle::getAABE 1,17
» 0212920 std:: _Unguarded_partition <Intersect... 1,06
» Q215200 Intersection::getReflectedRay 0,83
» Ox213f0 Diffuse::evalBRDF 0,64
» Ow212f30 gtd::_Insertion_sortl<Intersectable *. . 0,61
» Ox215030 Intersection: :calculatePositionDifferen. .. 0,54
» 0215570 Intersection: :getRefractedRay 0,47
» 0x213450 Ray::Ray 0,41
» Ox213900 Camera::getRay 0,41
» 0x2113b0 Intersection::Intersection 0,38
» Dx214f30 Ray::Ray 0,37

That Is all.

The second assignment Is out now!

As wuswual, we'’ || be act |
check in If you have any comments or questions!

Fin

