
Seminar 2, 2012

Bounding Volume Hierarchy

EDAN30 Photorealistic Computer Graphics

Magnus Andersson, PhD student (magnusa@cs.lth.se)

This seminar

• We want to go from hundreds of triangles to
thousands (or millions!)

• This assignment has few, but tricky, tasks.

Results
List

BVH

493 s 16.7 s

512x512 pixels, 5x5 samples 256x256 pixels, 3x3 samples

Elephants!

Overview

<<Raytracer>>

<<Intersectable>> <<Primitive>>

Triangle Sphere Mesh

Scene

<<Node>>

PointLight Camera

<<RayAccelerator>>

<<Material>>

Image

1

*

1 1 1

*

1

*

Overview

<<Raytracer>>

<<Intersectable>> <<Primitive>>

Triangle Sphere Mesh

Scene

<<Node>>

PointLight Camera

ListAccelerator

<<Material>>

Image

1

*

1 1 1

*

1

*

Yuck!

Overview

<<Raytracer>>

<<Intersectable>> <<Primitive>>

Triangle Sphere Mesh

Scene

<<Node>>

PointLight Camera

BVH

<<Material>>

Image

1

*

1 1 1

*

1

*

kD-tree vs. BVH vs. BIH vs. OcTree vs. Uniform Grid vs. ...

• What acceleration structure should you
choose??

kD-tree vs. BVH vs. BIH vs. OcTree vs. Uniform Grid vs. ...

• What acceleration structure should you
choose??

• Still an area of active research. It varies what’s
in fashion…

kD-tree vs. BVH vs. BIH vs. OcTree vs. Uniform Grid vs. ...

• What acceleration structure should you
choose??

• Still an area of active research. It varies what’s
in fashion…

• Short answer = It depends on your application
– Ray tracing (primary rays only?, GI?, …)

– Collision detection?

– Animated?

– Memory/speed tradeoffs

– Scene dependent

– Implementation dependent

– …

kD-tree vs. BVH vs. BIH vs. OcTree vs. Uniform Grid vs. ...

• What acceleration structure should you
choose??

• Still an area of active research. It varies what’s
in fashion…

• Short answer = It depends on your application

• You’ll find yourself playing around with
different alternatives before settling on a
suitable structure

kD-tree vs. BVH

• kD-tree (50s)
– Implementation from assignments two years ago.

• BVH (49s)
– This year’s reference implementation.

(Only tested on this Elephant scene)

kD-tree vs. BVH

• kD-tree (50s)
– Implementation from assignments two years ago.

• BVH (49s)
– This year’s reference implementation.

+ The BVH will be useful for other

purposes in a later lab

Assignment 2

• Construction

• Intersection

• Surface Area Heuristic (Optional)

• Further Optimizations (Optional)

Assignment 2

• Construction

• Intersection

• Surface Area Heuristic (Optional)

• Further Optimizations (Optional)

Construction

• You will need to create a new class BVHAccelerator
which inherits from <<RayAccelerator>>

• For this assignment you must implement
 void build(const std::vector<Intersectable *> &objects);

• …and you will probably need something like
 void build_recursive(int left_index, int right_index, AABB box,

 BVHNode *node, int depth);

Construction, brief overview

We begin with a bunch of Intersectables

Construction , brief overview

Find bounding box centroids of all intersectables

Construction , brief overview

Find the world bounding box and create a root node

Construction , brief overview

Use some splitting criteria to find a sensible division of
the elements into new child nodes

Construction , brief overview

Continue to split recursively until each node contains
only one or a few elements

Construction , brief overview

Now, when shooting rays we don’t have to test all
Intersectables anymore!

Construction

• So what is a sensible splitting criteria?

• Why not use mid-point splitting, since it’s
easy to understand and implement
– Works well when primitives are fairly evenly

distributed

Construction

• So what is a sensible splitting criteria?

• Why not use mid-point splitting, since it’s
easy to understand and implement
– Works well when primitives are fairly evenly

distributed

• You can try to come up with a different criteria
if you want to

– I tried splitting on the mean and median. Both
were outperformed by mid-point splitting

Construction

Find the mid point of the largest axis

Construction

Sort the bounding box centroids in the largest axis
direction. Then split into a left and a right side

Construction

Lather, rinse and repeat. Terminate when a node contains
few intersectables (I used 4, which worked well)

Construction

There is a hazard in getting all intersectables on one
side – we could end up with empty nodes!

Construction

If this happens, you can, for example revert to median
or mean splitting (median split is depicted above)

Construction

Now that you know the general concepts of a BVH, we
will discuss in-depth how we keep track of our nodes
and intersectables throughout the contruction process.

Node class

• BVH node class (inner class of BVHAccelerator)
class BVHNode {
 private:
 AABB bbox;
 bool leaf;
 unsigned int n_objs;
 unsigned int index; // if leaf == false: index to left child node,
 // else if leaf == true: index to first Intersectable in Objs vector
 public:
 void setAABB(AABB &bbox_) {…}
 void makeLeaf(unsigned int index_, unsigned int n_objs_) {...}
 void makeNode(unsigned int left_index_, unsigned int n_objs) {...}
 // n_objs in makeNode is for debug purposes only, and may be omitted later on

 bool isLeaf() { return leaf; }
 unsigned int getIndex() { return index; }
 unsigned int getNObjs() { return n_objs; }
 AABB &getAABB() { return bbox; };
};

Construction

In the build()-function we get a list of unsorted Intersectable
pointers, which we copy to a local vector. At the same time we
calculate the world bounding box.

Incoming intersectables – objects

Copy to

BVH Intersectable list – Objs

Construction

Set up a NodeList vector, which will hold our nodes. (We also
happen to know that the number of nodes needed will be at
most 2n – 1 nodes, if the leaf nodes contain 1 element each).

BVH Intersectable list – Objs

NodeList

Construction

Set left_index = 0, right_index = Objs.size() and n_nodes = 1.
Set the world bounding box to the root node using BVHNode::setAABB(box).
Then start building recursively.

root

left_index right_index

n_nodes

NodeList

Objs

Construction

First, check if the number of intersectables is fewer
than the threshold (let’s say 2 in this case). It isn’t.

left_index right_index

node

n_nodes

NodeList

Objs

Construction

Find largest dimension d and sort the elements in that
dimension.

left_index right_index

node

n_nodes

This is now sorted!

NodeList

Objs

Construction

Find the split_index, where the mid point divides the
primitives in a left and right side

left_index right_index

split_index

node

n_nodes

NodeList

Objs

Construction

Find the split_index, where the mid point divides the
primitives in a left and right side

left_index right_index

split_index

node

n_nodes

NodeList

Objs

Construction

Find the split_index, where the mid point divides the
primitives in a left and right side

left_index right_index

split_index

node

n_nodes

NodeList

Objs

Construction

Find the split_index, where the mid point divides the
primitives in a left and right side

left_index right_index

split_index

node

n_nodes

NodeList

Objs

Construction

Find the split_index, where the mid point divides the
primitives in a left and right side

left_index right_index

split_index

Success!

node

n_nodes

NodeList

Objs

Construction

(We could have used binary search)

left_index right_index

split_index

Success!

node

n_nodes

NodeList

Objs

Construction

Allocate two new nodes (left and right) from the NodeList. The
left node will have index n_nodes and the right one n_nodes + 1.

left_index right_index

split_index

node

left right

n_nodes

NodeList

Objs

Construction

Initiate node (which is currently the root node) with
BVHNode::makeNode(n_nodes).
(The index to the right node is always n_nodes + 1)

left_index right_index

split_index

node

n_nodes

left right

NodeList

Objs

Construction

Calculate the bounding boxes for left and right and
assign them to the two newly created nodes

left_index right_index

split_index

node

n_nodes

left right

NodeList

Objs

Construction

Call the build_recursive()-function for the left and then
the right node.

left_index right_index

split_index

node

n_nodes

left right

NodeList

Objs

Construction

Be sure to pass the correct Objs-vector indices to the left and right
nodes. The left node is now responsible for [left_index, split_index)
and the right node for [split_index, right_index).

left_index right_index

split_index

node

n_nodes

left right

NodeList

Objs

Construction

Processing of the left node yields the following result…

left_index right_index

n_nodes

node

NodeList

Objs
(Sorted)

Construction

left_index right_index

n_nodes

node

split_index

left right

NodeList

Objs

Construction

left_index right_index

n_nodes

node

left right

NodeList

Objs

Construction

left_index right_index

n_nodes

node

Finally we have only 2 primitives in the node:

(right_index – left_index <= 2)

NodeList

Objs

Construction

left_index right_index

n_nodes

node

We initiate the current node as a leaf using
void BVHNode::makeLeaf(left_index, right_index – left_index);

NodeList

Objs

Construction
n_nodes

This is what we end up with when we’re done.

NodeList

Objs

Construction, Pseudo code
Setup

void build(const std::vector<Intersectable *> &objects)
• Create new vector for Intersectable pointer copies

• Create new vector for the nodes

• Create Root node

• worldBox = AABB(); // world bounding box

• For each intersectable[i] in objects

– worldBox.include(intersectable[i] bounding box)

– Objs.push_back(intersectable[i])

• EndFor

• Set world bounding box to root node

• build_recursive(0, Objs.size(), root, 0);
 The declaration was: void build_recursive(int left_index, int right_index, BVHNode *node, int depth);

void build_recursive(int left_index, int right_index, BVHNode *node, int depth)

• If ((right_index – left_index) <= Threshold || (other termination criteria))
– Initiate current node as a leaf with primitives from Objs[left_index] to Objs[right_index]

• Else
– Split intersectables into left and right by finding a split_index

• Make sure that neither left nor right is completely empty

– Calculate bounding boxes of left and right sides

– Create two new nodes, leftNode and rightNode and assign bounding boxes

– Initiate current node as an interior node with leftNode and rightNode as children

– build_recursive(left_index, split_index, leftNode, depth + 1)

– build_recursive(split_index, right_index, rightNode, depth + 1)

• EndIf

Construction, Pseudo code
Recursion

Construction

• Sorting in C++
– This is what I did at least…

 #include <algorithm>

 // …

 ComparePrimitives cmp;

 cmp.sort_dim = 0; // x = 0, y = 1, z = 2

 std::sort(objs.begin() + from_index, objs.begin() + to_index, cmp);

– ComparePrimitives??

Construction

• Sorting in C++
class ComparePrimitives {

 public:

 bool operator() (Intersectable *a, Intersectable *b) {

 AABB box;

 a->getAABB(box);

 float ca = (box.mMax(sort_dim) + box.mMin(sort_dim)) * 0.5f;

 b->getAABB(box);

 float cb = (box.mMax(sort_dim) + box.mMin(sort_dim)) * 0.5f;

 return ca < cb;

 }

 int sort_dim;

};

Debug Scenes

Test scenes used to verify your implementation

Non-scrambled positions Scrambled positions

Debug Scenes
Node<Primitives: 80>

 Node<Primitives: 40>

 Node<Primitives: 20>

 Node<Primitives: 10>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 0>

 Leaf<Primitives: 2, First primitive: 3>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 5>

 Leaf<Primitives: 2, First primitive: 8>

 Node<Primitives: 10>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 10>

 Leaf<Primitives: 2, First primitive: 13>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 15>

 Leaf<Primitives: 2, First primitive: 18>

 Node<Primitives: 20>

 Node<Primitives: 10>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 20>

 Leaf<Primitives: 2, First primitive: 23>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 25>

 Leaf<Primitives: 2, First primitive: 28>

 Node<Primitives: 10>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 30>

 Leaf<Primitives: 2, First primitive: 33>

 Node<Primitives: 5>

 Leaf<Primitives: 3, First primitive: 35>

 Leaf<Primitives: 2, First primitive: 38>

 Node<Primitives: 40>
 Node<Primitives: 20>
 Node<Primitives: 10>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 40>
 Leaf<Primitives: 2, First primitive: 43>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 45>
 Leaf<Primitives: 2, First primitive: 48>
 Node<Primitives: 10>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 50>
 Leaf<Primitives: 2, First primitive: 53>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 55>
 Leaf<Primitives: 2, First primitive: 58>
 Node<Primitives: 20>
 Node<Primitives: 10>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 60>
 Leaf<Primitives: 2, First primitive: 63>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 65>
 Leaf<Primitives: 2, First primitive: 68>
 Node<Primitives: 10>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 70>
 Leaf<Primitives: 2, First primitive: 73>
 Node<Primitives: 5>
 Leaf<Primitives: 3, First primitive: 75>
 Leaf<Primitives: 2, First primitive: 78>

Debug Scenes
 Node<Primitives: 80>

 Node<Primitives: 40>

 Node<Primitives: 21>

 Node<Primitives: 8>

 Leaf<Primitives: 4, First primitive: 0>

 Leaf<Primitives: 4, First primitive: 4>

 Node<Primitives: 13>

 Node<Primitives: 7>

 Leaf<Primitives: 4, First primitive: 8>

 Leaf<Primitives: 3, First primitive: 12>

 Node<Primitives: 6>

 Leaf<Primitives: 3, First primitive: 15>

 Leaf<Primitives: 3, First primitive: 18>

 Node<Primitives: 19>

 Node<Primitives: 7>

 Leaf<Primitives: 4, First primitive: 21>

 Leaf<Primitives: 3, First primitive: 25>

 Node<Primitives: 12>

 Node<Primitives: 6>

 Leaf<Primitives: 3, First primitive: 28>

 Leaf<Primitives: 3, First primitive: 31>

 Node<Primitives: 6>

 Leaf<Primitives: 3, First primitive: 34>

 Leaf<Primitives: 3, First primitive: 37>

 Node<Primitives: 40>
 Node<Primitives: 19>
 Node<Primitives: 6>
 Leaf<Primitives: 3, First primitive: 40>
 Leaf<Primitives: 3, First primitive: 43>
 Node<Primitives: 13>
 Node<Primitives: 6>
 Leaf<Primitives: 4, First primitive: 46>
 Leaf<Primitives: 2, First primitive: 50>
 Node<Primitives: 7>
 Leaf<Primitives: 4, First primitive: 52>
 Leaf<Primitives: 3, First primitive: 56>
 Node<Primitives: 21>
 Node<Primitives: 6>
 Leaf<Primitives: 3, First primitive: 59>
 Leaf<Primitives: 3, First primitive: 62>
 Node<Primitives: 15>
 Node<Primitives: 8>
 Leaf<Primitives: 4, First primitive: 65>
 Leaf<Primitives: 4, First primitive: 69>
 Node<Primitives: 7>
 Leaf<Primitives: 4, First primitive: 73>
 Leaf<Primitives: 3, First primitive: 77>

Assignment 2

• Construction

• Intersection

• Surface Area Heuristic (Optional)

• Further Optimizations (Optional)

Intersection

• For this assignment you must implement

– Boolean test
 bool BVHAccelerator::intersect(const Ray& ray);

– Closest hit
 bool BVHAccelerator::intersect(const Ray& ray, Intersection& is);

• The two functions are very similar. If you have one of
them, you can easily implement the other.

Closest-Hit Intersection

Find closest intersection point

N
o

d
e

St
ac

k
C

lo
se

st
 h

it

Closest-Hit Intersection

World Bounding Box

First check if we even hit the world bounding box.
 bool AABB::intersect(const Ray& r, float& tmin, float& tmax) const;

tmin

tmax

N
o

d
e

St
ac

k
C

lo
se

st
 h

it

Closest-Hit Intersection

Left

Check the two children for intersection (again using
AABB::intersect(…)). In this case, both boxes were hit.

Right

tmin

tmax

N
o

d
e

St
ac

k
C

lo
se

st
 h

it

Closest-Hit Intersection

Left

Put the node furthest away on the stack along with it’s
hit parameter t. Traverse the closest node

Right

tmin

tmax

tright0

tleft0

N
o

d
e

St
ac

k

tright0

C
lo

se
st

 h
it

Closest-Hit Intersection

Left

This time we only hit one node, which happens to be a
leaf node

Right

tmin

tmax

N
o

d
e

St
ac

k

tright0

C
lo

se
st

 h
it

Closest-Hit Intersection

Intersection test with each primitive in the leaf.
 bool Intersectable::intersect(const Ray& ray, Intersection& is) const;

tmin

tmax

N
o

d
e

St
ac

k

tright0

C
lo

se
st

 h
it

Closest-Hit Intersection
N

o
d

e
St

ac
k

Store intersection and shorten ray.

tmin tmax

tright0

C
lo

se
st

 h
it

Closest-Hit Intersection

Pop the stack and recursively intersection test with the
node.

tmin tmax

N
o

d
e

St
ac

k
C

lo
se

st
 h

it
 tright0

Closest-Hit Intersection

Optimization – We can trivially reject the pop’d node since
its t-value is now further away than tmax of the ray.

tmin tmax

N
o

d
e

St
ac

k
C

lo
se

st
 h

it
 tright0

Closest-Hit Intersection

Try to pop the stack again to fetch the next node… but
now it’s empty, which means we’re done!

tmin tmax

N
o

d
e

St
ac

k
C

lo
se

st
 h

it

Closest-Hit Intersection

We found the closest hit with little effort!

tmin tmax

N
o

d
e

St
ac

k
C

lo
se

st
 h

it

No Intersection
N

o
d

e
St

ac
k

C
lo

se
st

 h
it

If there is no intersection, the Closest hit will of course
be empty – return false

Closest-Hit Intersection, Pseudo code

• LocalRay = Ray, CurrentNode = Root
• Check LocalRay intersection with Root (world box)

– No hit => return false

• For (infinity)
– If (NOT CurrentNode.isLeaf())

• Intersection test with both child nodes
– Both nodes hit => Put the one furthest away on the stack. CurrentNode = closest node

» continue
– Only one node hit => CurrentNode = hit node

» continue
– No Hit: Do nothing (let the stack-popping code below be reached)

– Else // Is leaf
• For each primitive in leaf perform intersection testing

– Intersected => update LocalRay.maxT and store ClosestHit

– EndIf
– Pop stack until you find a node with t < LocalRay.maxT => CurrentNode = pop’d

• Stack is empty? => return ClosestHit (no closest hit => return false, otherwise return true

• EndFor

Intersection

• Stack element
 struct StackItem {

 BVHNode *ptr;

 float t;

 };

• Use either a C-style vector or C++ Stack class

– StackItem stack[MAX_STACK_DEPTH];

– Stack<StackItem> stack;

Boolean Intersection, Pseudo code

• LocalRay = Ray, CurrentNode = Root
• Check LocalRay intersection with Root (world box)

– No hit => return false

• For (infinity)
– If (NOT CurrentNode.isLeaf())

• Intersection test with both child nodes
– Both nodes hit => Put right one on the stack. CurrentNode = left node

» Goto LOOP;
– Only one node hit => CurrentNode = hit node

» Goto LOOP;
– No Hit: Do nothing (let the stack-popping code below be reached)

– Else // Is leaf
• For each primitive in leaf perform intersection testing

– Intersected => return true;

– EndIf
– Pop stack, CurrentNode = pop’d node

• Stack is empty => return false

• EndFor

Debug Scenes

Make these scenes work first…

Non-scrambled positions Scrambled positions

Intersection

Elephants, without and with shadows

Without shadows With shadows

Assignment 2

• Construction

• Intersection

• Surface Area Heuristic (Optional)

• Further Optimizations (Optional)

Surface Area Heuristic

• c = estimated cost of traversing p and its children (l, r)

• ct = ~cost of performing one traversal iteration

• ci = ~cost of performing one intersection test

• nl, r = number of elements in child node

• S(Bl, r) = surface area of child node

• S(Bp) = surface area of parent node

Surface Area Heuristic

Continue to split if

• c = estimated cost of traversing p and its children (l, r)

• ci = ~cost of performing one intersection test

• np = number of elements in parent node

We stop splitting and create a leaf when it’s cheaper to
intersect all the Intersectables, than to split the node further.

Surface Area Heuristic

The parent surface area is passed by previous recursion
iteration.

Parent SA

2x

2
x

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Parent SA

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Left SA

nl = 1
nr = 7
S(Bl) =
S(Br) =
S(Bp) = Parent SA

Right SA

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Left SA

nl = 2
nr = 6
S(Bl) =
S(Br) =
S(Bp) = Parent SA

Right SA

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Left SA

nl = 3
nr = 5
S(Bl) =
S(Br) =
S(Bp) = Parent SA

Right SA

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Left SA

nl = 4
nr = 4
S(Bl) =
S(Br) =
S(Bp) = Parent SA

Right SA

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Left SA

nl = 5
nr = 3
S(Bl) =
S(Br) =
S(Bp) = Parent SA

Right SA

Surface Area Heuristic

For each axis. Begin by sorting elements. Then
calculate cost c of each potential split

Left SA

nl = 5
nr = 3
S(Bl) =
S(Br) =
S(Bp) = Parent SA

Right SA

And so on…

Surface Area Heuristic

Keep the best split (lowest c) over all three axes.

Continue splitting for as long as it pays off ()

Surface Area Heuristic

Can be slow for large scenes...

Optimize:

• Binned sorting

• Try only a few split planes

• Try selectively enabling/disabling SAH calculation at
different levels

• Etc, etc...

Results
Mid-point split

SAH

60 s 49 s

512x512 pixels, 3x3 samples 512x512 pixels, 3x3 samples

Assignment 2

• Construction

• Intersection

• Surface Area Heuristic (Optional)

• Further Optimizations (Optional)

Further Optimizations (Optional)

• Take a look inside
 bool AABB::intersect(const Ray &r, float &tmin, float &tmax) const;

– There is one expensive computation that can be pre-computed…

– Loop unrolling may help slightly...

• The BVHNode class takes 36 bytes (if your implementation
matches mine). This can be reduced (and more nicely aligned)

• Make sure that your <<Intersectable>>-intersection functions
are optimized

• Avoid recursion and pay careful attention to inner loops

• …be creative! (and/or use Google “BVH Construction” ;)

– There are other “hard-core” optimizations as well which are beyond

the scope of this course..

Further Optimizations (Optional)

Typical work distribution for a BVH

That is all.

The second assignment is out now!

As usual, we’ll be active on the forum, so be sure to
check in if you have any comments or questions!

Fin

