
Acceleration Data
Structures

Michael Doggett	

Department of Computer Science	

Lund university

© mmxi mcd

Ray tracing
• So far	

• ray tracing	

• sampling	

• object intersections	

• Today	

• How do we make it faster?	

• Performance = rays x objects	

• Text book, chapter 9 BVH

© 2011 Michael Doggett and Tomas Akenine-Mőller

Spatial data structures
!What is it?

!Data structure that organizes geometry in 2D or 3D or higher
!The goal is faster processing
!Needed for most ”speed-up techniques”

!Faster real-time rendering
!Faster intersection testing
!Faster collision detection
!Faster ray tracing and global illumination

!

!Games use them extensively
!Movie production rendering tools always use them

too

© mmxi mcd

Uniform Grids

• Positives	

• Easy to build	

• Easy to update	

• Negatives	

• Could use a lot of
memory	

• What grid size?

© mmxi mcd

1.Create bounding box	

2.break up into equal
sized units	

3.For each unit the
object overlaps, insert a
pointer

Building Uniform Grids

© mmxi mcd

del
taXdel

taY

Uniform Grid Traversal

• Use a 3D DDA algorithm	

• E.g. Amanatides’ Fast voxel traversal

if(tCurX<tCurY) {
tCurX += deltaX; X += 1;

} else {
tCurY += deltaY; Y += 1;

} NextVoxel(X, Y);

tCurX
tCurYN.B. this is simple positive case, could

be stepping in negative direction

© mmxi mcd

Uniform Grid
Traversal Problem

• Same ray can intersect same object multiple
times	

• Worst case - ground polygon	

• Solution : Object stores most recent RayID

RayID 77

RayID 77

© 2011 Michael Doggett and Tomas Akenine-Mőller

Are there more adaptive ways?
!Organize geometry into a hierarchy

In 2D space Data structure

© 2011 Michael Doggett and Tomas Akenine-Mőller

What’s the point?  
An example
!Assume we click on screen, and want to

find which object we clicked on

click!
1. Test the root first
2. Descend recursively as needed
3. Terminate traversal when possible
In general: get O(log n) instead of O(n)

© 2011 Michael Doggett and Tomas Akenine-Mőller

Bounding Volume Hierarchy (BVH)
!Most common bounding volumes (BVs):

!Sphere
!Boxes (AABB and OBB)

!The BV does not contribute to the rendered image
-- rather, encloses an object

•The data structure is a k-ary tree
• Leaves hold geometry
• Internal nodes have at most

k children
• Internal nodes hold BVs that

enclose all geometry in its subtree

© 2011 Michael Doggett and Tomas Akenine-Mőller

Some facts about trees
!Height of tree, h, is longest path from root

to leaf
!A balanced tree has all leaves at height h

or h+1
!Height of balanced tree with n nodes:

floor(logk(n))
!Binary tree (k=2) is the simplest

– k=4 and k=8 is quite common for computer
graphics as well

© 2011 Michael Doggett and Tomas Akenine-Mőller

How to create a BVH? 
Example: BV=AABB
!Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
More complex for other BVs

© mmxi mcd

BVH node visits

© 2011 Michael Doggett and Tomas Akenine-Mőller

Stopping criteria for Top-Down  
creation
!Need to stop recursion some time…

!Either when BV is empty
!Or when only one primitive (e.g. triangle) is inside

BV
!Or when <n primitives is inside BV
!Or when recursion level l has been reached
!Even better if it’s cost based. (e.g. stop when

splitting doesn’t improve cost)
!

!Similar criteria for BSP trees and octrees

© 2011 Michael Doggett and Tomas Akenine-Mőller

Binary Space Partitioning (BSP)
Trees
!Two different types:

!Axis-aligned - kd-tree
!kd-tree usually alternates between axes when splitting, x,y,z,x,...

!Polygon-aligned
!General idea:

!Divide space with a plane
!Sort geometry into the space it belongs
!Done recursively

!If traversed in a certain way, we can get the geometry
sorted along an axis
!Exact for polygon-aligned
!Approximately for axis-aligned

© 2011 Michael Doggett and Tomas Akenine-Mőller

kd-tree(1)
!Can only make a splitting plane along x,y,

or z

Minimal
 box

Split along
plane

Split along
plane

Split along
plane

© 2011 Michael Doggett and Tomas Akenine-Mőller

A

B

C

D E

kd-tree(2)

!Each internal node holds a divider plane
!Leaves hold geometry
!Differences compared to BVH

!Encloses entire space and provides sorting
!The BV hierarchy can be constructed in any way (no sort)
!BVHs can use any desirable type of BV

Plane 0

Plane 1a Plane 1b

Plane 2

0

1a

A B

1b

C 2

D E

© 2011 Michael Doggett and Tomas Akenine-Mőller

0

1

A B

1

C 2

D E

kd-tree  
Rough sorting
!Test the planes against the point of view
!Test recursively from root
!Continue on the ”hither” side to sort front to back

eye

1 23
4 5

!Works in the same way for polygon-
aligned BSP trees --- but gives exact
sorting

© 2011 Michael Doggett and Tomas Akenine-Mőller

Polygon-aligned BSP tree
!Allows exact sorting
!Very similar to kd-tree

!But the splitting plane are now located in the
planes of the triangles

© mmxi mcd

Where to split boxes?

• Mid-point - easy (N.B. Text book uses this)	

• Median-split	

• Sort objects along splitting axis by
centroid	

• Insert equal number of objects on each
side	

• Analysis of cost of hitting an object

© mmxi mcd

Where to split?

• Mid point = Bad

• Makes the L & R probabilities equal 	

• Pays no attention to the L & R costs
From Gordon Stoll

© mmxi mcd

Where to split?

• Median split = Bad

• Makes the L & R costs equal 	

• Pays no attention to the L & R probabilities
From Gordon Stoll

© mmxi mcd

Where to split?

• Cost-optimized split = Good!

• Automatically and rapidly isolates complexity	

• Produces large chunks of empty space
From Gordon Stoll

© mmxi mcd

Cost of nodes

• Cost to trace ray through the node
is close to number of triangles	

• Number of rays that hit an object
from a certain area is proportional
to the projected surface area	

• All rays is surface area	

• Called Surface-area heuristics (SAH)
Projected	

Area

Rays

© mmxiv mcd

Surface Area Heuristic
(SAH)

• Cost (C) of tracing a ray through box (B)	

• B1 and B2 are child boxes	

• P1 and P2 are number of primitives	

• Ct traversal cost	

• Ci intersection cost	

• Compare cost of different split positions	

• Terminate when intersecting all primitives is cheaper

C = Ct +
SA(B1)

SA(B)
|P1|Ci +

SA(B2)

SA(B)
|P2|Ci

© mmxiv mcd

Binary Tree Traversal

t_min = INF;
stack.push(root);
while (!stack.empty()) {
 currentNode = stack.pop();
 if (intersect(currentNode) < t_min) {
 if (currentNode.leaf)
 tmin = intersect(currentNode.objects);
 else
 stack.push(currentNode.children);
 }
}
return t_min;

stack

Tree

currentNode

Optimize!	

Put the furthest child on first

© 2011 Michael Doggett and Tomas Akenine-Mőller

Octrees (1)
!A bit similar to axis-aligned BSP trees
!Will explain the quadtree, which is the 2D

variant of an octree

!In 3D each square (or rectangle) becomes
a box, and 8 children

© 2011 Michael Doggett and Tomas Akenine-Mőller

Octrees (2)
!Expensive to rebuild (BSPs are too)
!Have a uniform structure
!

!Octrees can be used to
!Speed up ray tracing
!Faster picking
!Culling techniques

© mmxi mcd

Octrees

Image courtesy Sylvain Lefebvre et. al., from “Octree Textures on the GPU”, GPU Gems2, 2005	

© 2011 Michael Doggett and Tomas Akenine-Mőller

Scene graphs
!BVH is the data structure that is used most often

!Simple to understand
!Simple code

!However, it stores just geometry
!Rendering is more than geometry

!The scene graph is an extended BVH with:
!Lights
!Textures
!Transforms
!And more

© 2011 Michael Doggett and Tomas Akenine-Mőller

Speed-Up Techniques
!Spatial data structures are used to speed up

rendering and different queries
!

!Why more speed?
!Graphics hardware 2x faster in 6 months!
!Wait… then it will be fast enough!
!NOT!
!We will never be satisfied

!Screen resolution: 4K - 3840 × 2160 8K - 7680 × 4320
!Realism: global illumination
!Geometrical complexity: no upper limit!
!VR - 90Hz, low latency

© mmxi mcd

Data structure
summary

• Find intersections faster	

• Use simpler objects in hierarchy (AABB)	

• Tree type	

• Bounding Volume Hierarchy (BVH)	

• Grid based	

• Uniform Grid	

• Octree	

• Construction	

• Traversal

© mmxi mcd

Next

• Friday Lab, 10-12 or 13-15, sign up on web page	

• Questions? Check the forum	

• Text book, chapter 9 BVH 	

• Next week	

• Monday Seminar	

• Lab 2 BVH - Magnus	

• Path tracing!!

