
Assignment 4:
Progressive photon mapping

EDAN30

April 11, 2011

In this assignment you will be asked to extend your ray tracer to support
progressive photon mapping. In order to pass the assignment you need to
complete all tasks. Make sure you can explain your solutions in detail.

1 Scene setup

We start with the Cornell box from the previous assignment, no reflection
and refraction, and with a point light.

Task 1: Render a reference image using your path tracer. You need this
in order to validate your result using progressive photon mapping.

2 Progressive photon mapping

Progressive photon mapping is a technique that handles many types of light
paths in a robust manner. In particular, the difficult case where a scene is
dominated by caustics from small light sources. This part of the assignment
requires you to implement the algorithm, step by step.

2.1 Forward tracing pass

Progressive photon mapping is a two pass algorithm that first performs a
single forward tracing pass, from the eye, and then multiple photon tracing
passes, from light sources. Like a whitted tracer, the forward tracing pass

1

traces rays trough the pixels of the image. Sphere shaped sampling regions
are registered at each intersection, called hit points. A hit point remembers
which pixel it belongs to and is used to gather flux from photons interacting
near the hit point.

To generate an image, we go through each hit point an accumulate radiance
in the pixel the hit point belongs to. In order to support super sampling
(and later reflection and refraction) the hit point stores a weight indicating
how much of its radiance should contribute to the pixel. E.g., if 4 samples
per pixel is used, the weight of each resulting hit point should be 0.25.

Task 2: Implement the forward tracing pass and calculate direct illumination
at each hit point. Accumulate the weighted radiance of each hit point to the
corresponding pixel. In this step, the true radiance is not yet known - use
direct illumination. Set the initial radius of the hit points to 0.5.

A hit point should contain the following information:

struct Hitpoint {

Intersection is;

int pixelX, pixelY;

float pixelWeight;

float radius;

Color directIllumination;

float photonCount;

int newPhotonCount;

Color totalFlux;

};

Note that the intersection data structure contains information like BRDF
and surface normal. The last three fields should be initialized to zero.

Task 3: Construct a BVH around the hit points to accelerate point-in-sphere
tests. Augment your old BVH ray-accelerator to use Hitpoint structures in-
stead of Intersectable. Change the BVH traversal to use a simple point-in-box
test, instead of ray-box intersection.

2

2.2 Photon tracing pass

In each photon tracing pass we trace photons from the light source to the
scene and let them bounce around. There is always a single photon; russian
roulette is used to choose between reflection, refraction, diffuse bounce and
absorption (termination). For each bounce, the photon’s flux is accumulated
in overlapping hit points. For now, we stick to diffuse bounces.

The power of a photon is described by its flux, Φp. When a photon is emitted
from a point light, it has the flux:

Φp = 4πI

where I is the intensity of the light source. Note that each photon carries
the full power of the light source. We compensate for this later by dividing
by the number of photons emitted.

In order to determine what happens when a photon hits a diffuse surface, we
look at the rendering equation. Since we have a single incident photon, the
rendering equation becomes:

L(x→ Θ) = fr(x,Ψp ↔ Θ)Lp(x← Ψp)cos(Nx,Ψp)

where Lp is the incoming illumination from the photon. When working with
photons we need the flux instead of the radiance. Using:

L =
d2Φ

dωdA · cos(N,Ψ)

we get:
Φ(x→ Θ) = fr(x,Ψp ↔ Θ)Φp(x← Ψp)cos(Nx,Θ)

This equation tells us how much of the flux that spreads to a single direction
Θ. When the photon scatters over the hemisphere, the total emitted flux
becomes:∫

Ω

Φ(x→ Θ) dwΘ =

∫
Ω

fr(x,Ψp ↔ Θ)Φp(x← Ψp)cos(Nx,Θ) dwΘ

This can be approximated using multiple discrete samples:∫
Ω

Φ(x→ Θ) dwΘ ≈
1

n

n∑
i=1

fr(x,Ψp ↔ Θi)Φp(x← Ψp)cos(Nx,Θi)

p(Θi)

3

Since we only want to propagate the photon in a single direction, we use a
single sample:∫

Ω

Φ(x→ Θ) dwΘ ≈
fr(x,Ψp ↔ Θ)Φp(x← Ψp)cos(Nx,Θ)

p(Θ)
(1)

Because direct illumination at each hit point is known, the first bounce of a
photon is ignored. For the following bounces, the photon should determine
overlapping hit points. Use the BVH to quickly determine overlap candi-
dates. You need to determine both that the photon is within the radius
of the hit point, and that the surface normal of the hit point and the sur-
face normal of the photon hit is not facing each other. At each overlap, the
photon flux is accumulated into the hit point using the following pseudo code:

hit.newPhotonCount += 1
hit.totalFlux += Φp· hit.is.mMaterial->evalBRDF (hit.is ,−Ψp)

Once the total flux for a hit point is known, its radiance can be calculated
using the following relation:

L(x→ Θ) =
Φtotal

ntotalπr2
+ Ldirect(x→ Θ)

where ntotal is the total number of photons emitted into the scene (all passes),
Φtotal is the same as hit.totalFlux, r is the same as hit.radius and
Ldirect(x→ Θ) is the same as hit.directIllumination.

Task 4: Implement the photon tracing pass. Trace 100000 photons from
the light source in random directions.

Use multiple diffuse bounces, terminated using russian roulette. The dif-
fuse bounces should be implemented by continuing the photon path in a
random direction on the hemisphere. Use a uniformly sampled direction,
sampled using rejection sampling. Use equation (1) to calculate the photon
flux after diffuse scatter.

Task 5: Repeat the photon tracing pass and output the result of each pass to
an image.

4

2.3 Radius reduction

In order to guarantee convergence of the algorithm, the radius of each hit
point needs to be reduced after each photon tracing pass. For this to work,
both the total flux and the number of photons need to be compensated. The
following pseudo code takes care of that:

A = hit.photonCount + hit.newPhotonCount

B = hit.photonCount +α · hit.newPhotonCount
hit.radius *=

√
B
A

hit.totalFlux *= B
A

hit.photonCount = B
hit.newPhotonCount = 0

Task 6: Implement radius reduction and repeat the photon tracing passes.
Use α = 0.7.

2.4 Cosine weighted sampling

Similar to the previous assignment, about path tracing, we have a geometric
term in equation (1).

Task 7: Use your knowledge to improve the efficiency by implementing co-
sine weighted sampling.

2.5 Reflection and refraction

Task 8: Implement reflection and refraction for the photons using russian
roulette. Use the reflectivity and transparency of the material as probabili-
ties for these events. If none of these events occur, do diffuse scatter.

By letting the photons do reflection and refraction, you will see some beau-
tiful caustics. However, in order for the viewer to actually see the reflections
and refractions, the forward tracing pass needs to be extended as well. To
this end, perform whitted style reflection and refraction and generate hit
points at the intersections with appropriate weights.

5

Task 9: Download surface.obj from the course web page and add it to your
scene. Use the following code:

Diffuse* water = new Diffuse(Color(0.6f, 0.6f, 0.7f),

0.2f, 0.7f, 1.33f);

Mesh* surface = new Mesh("data/surface.obj", water);

surface->setScale(120.0f);

surface->setTranslation(0.0f, 50.0f, 0.0f);

scene->add(surface);

6

