
Assignment 3: Path tracing

EDAN30

April 2, 2011

In this assignment you will be asked to extend your ray tracer to support
path tracing. In order to pass the assignment you need to complete all tasks.
Make sure you can explain your solutions in detail.

Verify your result by comparing your images to those in the seminar.

1 Scene setup

For this assignment you should use the Cornell scene. Download cornellscene.zip
from the course web page. Unzip the files and add them to your project. Use
buildCornellScene to build the scene and setupCornellCamera to position
the camera. This scene is a variation of the classic Cornell box. It is good
for debugging global illumination algorithms due to its visual properties and
simple geometry.

Task 1: Start by implementing a whitted ray tracer performing jittered su-
persampling. Make sure your tracer handles direct illumination. You should
know this from previous assignments. If a ray does not hit anything, the
color returned should be black, i.e., the background color should be black.

Task 2: Extend you direct illumination model to attenuate each point light
with increasing distance. To this end, calculate the distance, d, between a
light and a receiving point and multiply its contribution by 1

d2
.

1



2 Path tracing

Path tracing is one of the simplest and most intuitive algorithms for global
illumination. This part of the assignment requires you to implement the
algorithm, step by step.

2.1 Indirect illumination

In real life there is no single light source illuminating the environment. In
reality, light bounces off surfaces making each surface a new light source in
turn. In order to better approximate the rendering equation, we need to
consider this indirect illumination.

Indirect illumination can be written as:

Lindirect(x→ Θ) =

∫
Ω

Lin(x← Ψ)fr(x,Ψ↔ Θ)cos(Nx,Ψ) dωΨ (1)

where Lin is the incident radiance at x in direction Ψ. This can be approxi-
mated using a finite sum of discrete samples:

Lindirect(x→ Θ) ≈ 1

n

n∑
i=1

Lin(x← Ψi)fr(x,Ψi ↔ Θ)cos(Nx,Ψi)

p(Ψi)
(2)

where Ψi are samples with probability distribution function (pdf) p(Ψ).

The incoming radiance in direction Ψi is the same as the outgoing radi-
ance from the hit point when tracing a ray in that direction. Using the ray
casting function, r(x,Ψ), this can be written as:

Lin(x← Ψ) = L(r(x,Ψ)→ −Ψ) (3)

Intuitively, to approximate equation (1) we sample the entire hemisphere us-
ing rays and treat the illumination at each hit point as a light source. This
is a recursive integral, requiring the illumination at each sample point to be
recursively evaluated.

We could do this by sampling illumination from the environment using more
rays at each recursive hit. This is not tractable as we need hundreds of rays

2



at each recursion for good results, each new ray contributing less to the im-
age. In path tracing we stick to a single ray and randomize its path. Given
enough rays through each pixel, the result will converge to the correct solu-
tion.

Task 3: Implement multiple bounces of indirect lighting by tracing recursively
in a random direction on the hemisphere. Use russian roulette to terminate
the recursion. In order to get good results you need a large number of rays
per pixel. Increase your supersampling to at least 100 rays per pixel.

In this first implementation you should use uniform samples, i.e., p(Ψ) = k,
where k is constant. Start by calculating the value of k using the identity:∫

Ω

p(Ψ) dωΨ = 1⇔
∫ 2π

φ=0

∫ π/2

θ=0

p(θ, φ)sin(θ) dθdφ = 1 (4)

The sample directions, Ψi, should be uniformly sampled using rejection sam-
pling.

Proceed by sampling the surroundings using equation (2) recursively. If
a ray does not hit anything, the color of the background (black) is used as
illumination.

2.2 Cosine weighted sampling

In the previous task, the BRDF was multiplied with the geometric term
cos(θ). This causes some rays with lower geometric term to contribute less
to the resulting image, which reduces the efficiency of the rays. In order to
remedy this, we send rays in a cosine weighted direction, allowing each ray
to contribute equally.

Task 4: Implement cosine weighted importance sampling for better effi-
ciency. Start by setting p(θ, φ) = k · cos(θ) and use equation (4) to calculate
the constant k. The geometric term can then be eliminated from equation
(2) when sampling.

In order for this to work, the sample directions, Ψi, need to be sampled

3



using that pdf. Start by calculating the cumulative distribution function:

F (θ, φ) =

∫ φ

0

∫ θ

0

p(θ, φ)sin(θ) dθdφ =
φ

2π
(1− cos2(θ)) (5)

Separate into:

Fθ = 1− cos2(θ)

Fφ =
φ

2π

Set each separated part to a uniform random number uθ, uφ ∈ [0, 1] and solve
for θ and φ:

θ = cos−1
√

1− uθ
φ = 2πuφ

In order to create a direction vector, Ψi, pointing in the direction of θ and
φ, we need a basis around the sample point x with the normal, Nx, as z-
coordinate axis. Once such a basis is established, the direction in that basis
is given by:

x = cos(φ)sin(θ)

y = sin(φ)sin(θ)

z = cos(θ)

2.3 Reflection and refraction

Reflection and refraction can be implemented using russian roulette. This is
preferred over continuing two rays from the surface; one reflection ray and
one refraction ray. It is much more effective to trace a single ray with full
contribution to the image, than tracing two less contributing rays. The re-
flectivity and transparency of the material are used as probabilities for their
respective events. If none of these events occur, direct and indirect illumina-
tion is performed instead.

Task 5: Add a 50% reflective material to ball1 and a 50% refractive mate-
rial with n = 1.5 to ball2. Implement reflection and refraction using russian
roulette.

4



2.4 Area lights

Path tracing cannot capture caustics caused by direct illumination from the
point light (why?).

Task 6: Remove the point light from the scene and add a area light. This
can be accomplished by adding a sphere with a emissive material. Use the
same location as the point light and set the sphere radius to 20. Set the
emissive color of the sphere to (r, g, b) = (10, 10, 10).

Observe the caustics from the glass sphere.

Task 7: Reduce the sphere radius to 1 and set the color to (r, g, b) =
(4000, 4000, 4000). Explain what happens.

2.5 Image based lighting

If we have an open scene, many rays end up sampling the background. If a
color is assigned to the background, it can be used as light source.

Task 8: Remove the area light, the roof and the sides from the scene. Set
the background color to (r, g, b) = (1, 1, 1).

To get more interesting illumination, a light probe can be used instead of
a constant background color.

Task 9: Make the ground 50% reflective. Load a light probe using the pro-
vided class. Sample it in the direction of the ray to get the background color.
Different light probes can be downloaded from the course web page.

5


