Assignment 2: Bounding Volume Hierarchy

EDAN30
March 30, 2011

This assignment will introduce you to a data structure called the Bound-
ing Volume Hierarchy (BVH). In order to pass the assignment you need to
complete all tasks. Make sure you can explain your solutions in detail.

1 Scene setup

You will need to create two new files — bvhaccelerator.cpp and bvhaccelerator.h
containing the BVH implementation and declaration. The BVH class should
inherit from the RayAccelerator-class.

2 BVH Construction

First we need to build the BVH from a list of incoming Itersectables.
Starting with the entire set of Itersectables, we must (somewhat intel-
ligently) split that in to two sub-sets. This “simple” process is repeated
recursively until there are only a few primitives per set. Each sub-set has its
own bounding box which is, at most, as big as the bounding box of the par-
ent set. In the end we will have a binary tree with an approximate O(logn)
search complexity.

Task 1: Start by inserting the “buildSimple” scene to your project. You
will find the code in appendix B.1. Make sure that the scramble-parameter
is set to false.

Task 2: Implement a BVH skeleton and replace the list accelerator object
with your BVH in the beginning of the main-function. The project should
now compile, but it will not run properly.

Task 3: Implement the build()-function, as described in the seminar. Only

1



implement the base case (no recursion yet). Make sure that your world
bounding box is:

World Bounds:
Min: -40.5 -40.5 -40.5
Max: 40.5 40.5 40.5

Now it’s time to actually do the construction. So, what is a sensible splitting
criteria? Mid-point splitting is easy to understand and implement, so let’s
start with that.

Task 4: Implement the recursion portion of the BVH construction routine.
Use mid-point splitting. Without being able to intersect anything it is diffi-
cult to debug, however. Therefore we also include the debug printing function
in your BVH. You find the code for the print-function in appendix A. When
you run your build-function, your output should match the output listed in
appendix B.2.

Task 5: Change the parameter scramble of buildSimple to true. The
output of the print-function should now (approximately) match that of ap-
pendix B.3.

When you are confident that your BVH construction routine is working prop-
erly, remove the print function call (or the console will be flooded later), and
move on to the next set of assignments.

3 BVH Traversal

Next we need to implement intersection testing, both a closest hit- and a
boolean-test. The seminar slides should give you enough background to un-
derstand how this is done.

We will first implement the closest hit function, and ignore shadow rays
for now (they need boolean intersection tests). Just make the boolean-test
always return false, and your shadows are effectively disabled.

Task 6: Implement a closest hit intersection test. You should try to keep
the implementation as simple as possible to begin with. Add optimizations
when you are sure that the intersection code is working. Remember that



premature optimization is the root of all evil and may implode the Universe.

Task 7: Switch to the “buildElephants” scene. The code can be found in ap-
pendix C. Your image should roughly match the ones in the seminar, minus
the shadows.

Task 8: Implement a boolean intersection test. Remember that the boolean
intersection code will be similar to the closest hit code, so that’s a good
starting point.

4 Surface Area Heuristic (SAH) (Optional)

By building a good tree, i.e. putting more thought in to the splitting criteria,
we can gain some more performance.

Optional 1: Alter the construction function to use SAH instead of mid-
point splitting.

5 Optimization (Optional)

Finally, there is an array of small optimizations that can be implemented.
The construction function usually constitutes a small part of the execution
time, so it’s probably a better idea to concentrate most of the optimization
efforts on the traversal code. Implementing a better tree construction tech-
nique (better splitting criteria) is of course also a good area of improvement.
For more tips, check the seminar slides.

Optional 2: Try to optimize the BVH intersection and construction code
as much as possible.

6 Conclusion

In this assignment we have implemented a BVH which has improved ren-
dering times tremendously. Cranking up the number of rays per second is
impervious in rendering realistic scenes.



A BVH Debug Printing Function

Use the following print function to make sure that you have built a good
tree. Copy and paste this code into bvhaccelerator.cpp. (You will need
to put declarations in bvhaccelerator.h as well of course.)

#include <iomanip>
void BVHAccelerator::print_rec(BVHNode *node, int depth)
{
std::cout << std::setw(depth * 2) << 7 7y
if (node->isLeaf())
std::cout << "Leaf<Primitives: " << node->getNObjs() << ", First primitive: " << node->getIndex() << ">" << std::endl;
else {
std::cout << "Node<Primitives: " << node->getNObjs() << ">" << std::endl;
BVHNode *left = &nodeList[node->getIndex()];
BVHNode *right = &nodeList[node->getIndex() + 1];
print_rec(left, depth + 1);
print_rec(right, depth + 1);
}
}

void BVHAccelerator::print()

std::cout << "Printing nodes..." << std::endl;

std::cout << "World Bounds: " << std::endl;

std::cout << "Min: " << root->getAABB().mMin;

std::cout << "Max: " << root->getAABB().mMax << std::endl;
print_rec(root, 1);



B Simple Test Scene

Use this function to verify that your BVH construction function works as
expected.

B.1 Scene Construction Function

Copy and paste this code into main.cpp

static void buildSimple(Scene& scene, bool scrambled)

{
PointLight *pointLightO = new PointLight (Point3D(-20.0f, 20.0f, 60.0f), Color(1.5f, 1.5f, 1.5f));
scene.add(pointLight0) ;

// Setup material
Diffuse *material = new Diffuse(Color(0.0f,0.2f,1.5f));
material->setReflectivity(0.4£);

// Add spheres
for (int i = 0; i < 80; i++) {
float x, y, z;
if (scrambled) {
x = -39.5f + (float) ((i * 13) % 80);
y = -39.5f + (float) ((i * 7) % 80);
z = -39.5f + (float) ((i * 29) % 80);
} else {
x = -39.5f + (float) (i % 80);
y = -39.5f + (float) (i % 80)
z = -39.5f + (float) (i % 80);
}
Sphere* sphere = new Sphere(1.0, material);
sphere->setTranslation(Vector3D(x, y, z));
scene.add (sphere) ;

You might also want to change your camera to match the seminar images:

Camera* camera = new Camera(&output);
Point3D pos(0.0f, 0.0f, 116.0f);

Point3D target(0.0f, 0.0f, 0.0f);
Vector3D up(0.0f, 1.0f, 0.0f);
camera->setLookAt (pos, target, up, 58.0f);



B.2 Expected Result (Non-scrambled positions)

You should get the same (or a similar) result if you print your contructed
tree using the print-function, with the scrambled parameter set to false.

World Bounds:

Node<Primitives: 80>
Node<Primitives: 40>
Node<Primitives: 20>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 0>
Leaf<Primitives: 2, First primitive: 3>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 5>
Leaf<Primitives: 2, First primitive: 8>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 10>
Leaf<Primitives: 2, First primitive: 13>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 15>
Leaf<Primitives: 2, First primitive: 18>
Node<Primitives: 20>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 20>
Leaf<Primitives: 2, First primitive: 23>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 25>
Leaf<Primitives: 2, First primitive: 28>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 30>
Leaf<Primitives: 2, First primitive: 33>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 35>
Leaf<Primitives: 2, First primitive: 38>
Node<Primitives: 40>
Node<Primitives: 20>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 40>
Leaf<Primitives: 2, First primitive: 43>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 45>
Leaf<Primitives: 2, First primitive: 48>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 50>
Leaf<Primitives: 2, First primitive: 53>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 55>
Leaf<Primitives: 2, First primitive: 58>
Node<Primitives: 20>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 60>
Leaf<Primitives: 2, First primitive: 63>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 65>
Leaf<Primitives: 2, First primitive: 68>
Node<Primitives: 10>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 70>
Leaf<Primitives: 2, First primitive: 73>
Node<Primitives: 5>
Leaf<Primitives: 3, First primitive: 75>
Leaf<Primitives: 2, First primitive: 78>



B.3 Expected Result (Scrambled positions)

You should get the same (or a similar) result if you print your contructed
tree using the print-function, with the scrambled parameter set to true.

World Bounds:

Node<Primitives: 80>
Node<Primitives: 40>
Node<Primitives: 21>
Node<Primitives: 8>
Leaf<Primitives: 4, First primitive: 0>
Leaf<Primitives: 4, First primitive: 4>
Node<Primitives: 13>
Node<Primitives: 7>
Leaf<Primitives: 4, First primitive: 8>
Leaf<Primitives: 3, First primitive: 12>
Node<Primitives: 6>
Leaf<Primitives: 3, First primitive: 15>
Leaf<Primitives: 3, First primitive: 18>
Node<Primitives: 19>
Node<Primitives: 7>
Leaf<Primitives: 4, First primitive: 21>
Leaf<Primitives: 3, First primitive: 25>
Node<Primitives: 12>
Node<Primitives: 6>
Leaf<Primitives: 3, First primitive: 28>
Leaf<Primitives: 3, First primitive: 31>
Node<Primitives: 6>
Leaf<Primitives: 3, First primitive: 34>
Leaf<Primitives: 3, First primitive: 37>
Node<Primitives: 40>
Node<Primitives: 19>
Node<Primitives: 6>
Leaf<Primitives: 3, First primitive: 40>
Leaf<Primitives: 3, First primitive: 43>
Node<Primitives: 13>
Node<Primitives: 6>
Leaf<Primitives: 4, First primitive: 46>
Leaf<Primitives: 2, First primitive: 50>
Node<Primitives: 7>
Leaf<Primitives: 4, First primitive: 52>
Leaf<Primitives: 3, First primitive: 56>
Node<Primitives: 21>
Node<Primitives: 6>
Leaf<Primitives: 3, First primitive: 59>
Leaf<Primitives: 3, First primitive: 62>
Node<Primitives: 15>
Node<Primitives: 8>
Leaf<Primitives: 4, First primitive: 65>
Leaf<Primitives: 4, First primitive: 69>
Node<Primitives: 7>
Leaf<Primitives: 4, First primitive: 73>
Leaf<Primitives: 3, First primitive: 77>




C Elephant Scene

A scene consisting of two elephants and a plane. Copy and paste this code
into main. cpp, for example.

static void buildElephant (Scene& scene)

{
PointLight *pointLight0 = new PointLight (Point3D(-50.0f, 60.0f, 20.0f), Color(0.4f, 0.7f, 0.7£));
scene.add(pointLight0) ;

PointLight *pointLightl = new PointLight (Point3D(70.0f, 140.0f, -7.0f), Color(2.5f, 2.5f, 2.5f));
scene.add(pointLight1);

Diffuse *planeMaterial = new Diffuse(Color(1.0f,1.0f,1.0f));
planeMaterial->setReflectivity(0.75f);

Mesh* plane = new Mesh("data/plane.obj", planeMaterial);
plane->setScale(20.0f);

plane->setTranslation(Vector3D(0, -10, 0));
scene.add(plane) ;

Diffuse *elephantMaterialO = new Diffuse(Color(0.4f,0.7f,1.0£));
elephantMaterialO->setReflectivity(0.55f);

Mesh* elephantO = new Mesh("data/elephant.obj", elephantMaterialO);
elephantO->setScale(1.1£f);

elephantO->setRotation(0.0f, 220.0f, 0.0f);
elephantO->setTranslation(Vector3D(-12, -10, 1));

scene.add (elephant0) ;

Diffuse *elephantMateriall = new Diffuse(Color(0.4f,1.0f,0.7£));
elephantMateriall->setReflectivity(0.20f);
elephantMateriall->setTransparency(0.50f);
elephantMateriall->setIndexOfRefraction(1.1f);

Mesh* elephantl = new Mesh("data/elephant.obj", elephantMateriall);
elephantl->setScale(1.35f);

elephantl->setRotation(0.0f, 190.0f, 0.0f);
elephant1->setTranslation(Vector3D(8.0f, -10, -5));
scene.add(elephant1) ;

Also change the camera parameters found in the main-function to:

Camera* camera = new Camera(&output);
Point3D pos(27.0f, 13.0f, 21.0f);

Point3D target(0.0f, -4.0f, 0.0f);
Vector3D up(0.0f, 1.0f, 0.0f);
camera->setLookAt (pos, target, up, 52.0f);



