Assignment 1: Whitted Ray Tracing

EDAN30
March 23, 2011

This assignment will introduce you to some of the basic concepts of ray
tracing. In order to pass the assignment you need to complete all tasks.
Make sure you can explain your solutions in detail.

1 Introduction

Start out by opening your prTracer-project and making sure that it compiles
and runs without any errors. This initial incarnation of the ray tracer is only
capable of shooting eye rays and detecting whether they hit any spheres in
a scene or not. After the program has finished running, you should find an
image file output.exr in the root directory of the project. The image should
be white for where eye rays hit any sphere, and black otherwise.

2 Scene setup

For this assignment you should use the “spheres” scene. It can be found in
main.cpp.

3 Diffuse Reflection

Right now there is no light transport at all in the scene. It would definitly be
more interesting if we would be able to apply diffuse shading to the spheres.
For now we only consider direct illumination that originates from a point
light source.



The radiance that reaches the viewer along the (negative) eye vector © can
then be computed as;

Lowt(x = O) = Lgjrect(x <= V) fr(2, ¥ <> O)cos(N,, V) (1)

In the pr'Tracer, when a ray intersects a sphere, an Intersection object is
returned. This object contains useful information about the ray-sphere in-
tersection event. Amongst other things, you can retrieve the world position
and normal of the hit point, as well as the material of the object.

Task 1: Use this information to implement diffuse shading using direct illu-
mination from a single point light source.

Task 2: Add more than one light source to your scene. By simply sum-
ming the radiance contribution of equation 1 for each light source you will
get the correct result.

Lowt(z = ©) = Y Laireat(x <= W) fo (2, U; <> ©)cos(N,, ¥;)

lights

4 Shadows

So far shadows are not considered. If there is an object between the hit point
and the light source, there is no direct illumination, and thus the Lg;,...-factor
should be set to 0. By sending a shadow ray from the hit point to the light
source and checking for intersections, we can determine if the hit point is in
shadow or not.

Task 3: Implement shadow rays by shooting rays from the hit point to-
wards the light sources. Note that the intersection test only has to return a
boolean, true or false answer, since we are not interested in any intersection
information for shadow rays.



5 Reflection

The next step to achieve more realistic looking images is to add reflections.
Real world materials are of course neither perfectly diffuse nor perfectly spec-
ular, but a combination of the two components can give fairly convincing
polished materials.

Similar to shadow rays in the last excersise, a reflectance ray can be spawned
at the point of intersection. This way, a ray originating from the eye can
be traced recursively to account for alterations in the ray path caused by
reflections. Now that we have reflection we get the following;

Loyi(x — ©) = (1-r) Z Li(x < ;) fr(z,¥; <> O)cos(Ny, V;)+rLs(z <+ R)

lights

This equation contains a new parameter, the specular reflectance (r). For
this assignment it’s enough to assume that r affects all wave lengths equally,
and thus is a single coefficient € [0,1]. If » = 0.0 it means that a surface is
not reflective and r = 1.0 means that it is a perfect mirror. Notice that we
linearly interpolate the resulting color using 7.

Task 4: Implement specular reflection, where each intersection where r > 0
spawns a new reflectance ray. Important note: It is possible for a ray to get
“trapped” in an infinite series of reflections, so we introduce some stopping
criteria. The easiest solution is simply terminating the ray tracing at a fixed
recursion depth.

Task 5: Add a few more spheres to the scene and play around with different
r parameter values.

6 Refraction

Another important feature of a ray tracer is the ability to handle trans-
parency and refractions. Many real materials are more or less transparent
(glass, plastic, liquids, etc). When light enters a transparent material, it is
usually bent or refracted. How much is determined by the index of refraction
of the material. By using Snell’s law we can compute the refraction vector
T (For more details on refraction see the lecture- and seminar notes.).

3



Similar to the reflection term, we add the refraction term to our light trans-
mittance model as follows;

Lout(x — 6) =
(L=7=1) D ignes Lalw < W) fi(2, ¥; <> ©)cos(Ny, ¥;)+
rLg(z <~ R) +tLy(x < T)

Just like for reflection, a refraction ray can be traced by (recursively) spawn-
ing a new ray at the hit point of a refractive surface where ¢t > 0. Like before,
we interpolate between the direct illumination, reflection and refraction com-
ponents, so it should hold that r +¢ < 1.

Task 6: Implement refraction in your ray tracer.

Task 7: Try different combinations of the r and t parameters.

7 Super Sampling

All of the images produced so far appear very jagged when examined at close
up. This is because we are only tracing a single ray through each pixel. To
get a smoother result, it is necessary to use some kind of super sampling.

Task 8: Implement stratified grid sampling to produce anti-aliased images.
Note that the output color should be the average of the color returned by
the samples. Unfortunately, performance scales linearly with the number of
samples you use. You can try to use 3 X 3 samples per pixel, and then zoom
in on the silhouette of a sphere to see the improved result. It may also help to
lower the recursion depth cutoff for reflection/refraction rays (3 or so should
be enough).

8 Ray-Triangle Intersection Testing

Only being able to trace spheres will not make for very interesting scenes.
Triangles are more appropriate building blocks for complex models, since
they are the simplest primitive that can be used to define a surface in space.

4



Complex objects can consist of meshes with millions of triangles (or more!).

Hidden in the “spheres” scene is a plane consisting of two triangles. You
cannot see it yet, because your ray tracer doesn’t know how to test rays and
triangles for intersection. One way to perform ray-triangle intersection test-
ing is to calculate the intersection point of the ray and the triangle plane,
and then check if the point is inside the triangle using barycentric coordinates.

Task 9: Implement ray-triangle intersection testing (make sure to include
a boolean test for shadow rays). You will find a detailed description of ray-
triangle intersection in the seminar slides.

9 Blinn-Phong Shading (Optional)

Instead of just having diffuse surfaces, a more commonly used BRDF is the
Blinn-Phong shading model. We go back and look at equation 1 again;

Lowt(x — ©) = Lyirect(x < V) fr(z, ¥ <> O)cos(N,, V)

where f, is the BRDF. Since only diffuse surfaces were considered so far, the
BRDF is just a constant; f.(z, ¥V <> ©) = k;. What this means is that the
light is not concentrated in any particular direction, but outgoing light is
equally distributed in all directions. Adding Blinn-Phong shading, however,
gives us an additional glossy specular reflection component.

Add a new Blinn-Phong material to your ray tracer. Note that this is an
optional excersice that you should only attempt if you are finished with
the rest of the assignments.

By adding a Blinn-Phong specular highlight for direct illumination to the
prTracer, we actually end up with two types of specular reflection — the
Blinn-Phong one (glossy) and the Whitted one (perfectly specular). This is
of course not really physically correct, but nevertheless, the results can look
quite pleasing.



10 CIliff Hanger

Finally, you will discover just how slow ray tracing can be if not implemented
properly. At the end of the buildSpheres function in main.cpp you will
find a few lines of code that are commented out. Uncomment these lines. A
triangle mesh that approximates a sphere is now present in the scene. The
mesh consists of a mere few hundred triangles, yet the rendering has become
tremendously slow. Why is that?

11 Conclusion

In this assignment you have implemented the core parts of a very simple
Whitted ray tracer. Starting with a dull scene without shadows, reflections
and refractions, all of these effects were added relatively easily. Supersam-
pling was implemented to reduce aliasing and making the images smoother.
Ray-Triangle intersection testing was implemented, enabling more complex
scenes. Finally, a tessellated sphere was added, which heavily impacted ren-
dering performance. This performance hit will be addressed in the next
assignment.



