
Example questions in
EDAN26 Multicore Programming

You may answer in English, på svenska, auf Deutsch, или по-русски. All questions below are
worth ten points except when noted otherwise (one or two may be reduced to eight or nine points
on the exam). On the exam, there will be max 60 points and the grade will be b your score / 10 c.

Write clearly. Uninterpretable text will be marked with a question mark and zero points.

Examiner: Jonas Skeppstedt

1. Describe sequential consistency. How is the cache coherence protocol used to implement
it? Why are compilers and processors not allowed to change the order between two memory
accesses?

2. What is the fundamental idea of relaxed memory models that improves performance over se-
quential consistency, and how does that affect the programmer?

3. Have relaxed memory models any consequences for compilers and hardware design as well?
If so, give examples of that!

4. Define Amdahl’s Law and explain why it is essential. Give a simple example.

5. Explain at least three important goals of data partitioning!

6. Explain briefly the synchronization primitives mutex and condition variable. Why should the
waiting for a condition be in a loop?

7. Cache misses are more costly on large multicore machines than on uniprocessors and one
approach to reduce their performance impact is to prefetch data. Why can that be more
difficult on multicores, especially if you prefetch and request ownership of the data?

8. What is false sharing and give examples of what programmers can do to reduce the risk of it?

9. Assume you use hardware transactional memory such as on POWER8. Why should you be
extra careful to avoid false sharing misses?

10. Explain the difference between release consistency and weak ordering.

11. Compare traditional threads programming with mutexes and condition variables with hard-
ware transactional memory. What is similar and what is different? Which approach do you
expect will have most success and why? (there is no right or wrong answer to this, obviously,
but you need to make valid arguments for why you write what you write)

12. Suppose you have taken a mutex, what are the effects of unlocking it first and then signaling
a condition variable versus signaling first and unlocking afterward?

13. How can you avoid data races in Scala without using locks? Is this technique applicable to
other languages as well?

14. Hardware data prefetching can improve performance of many codes. Consider their use with
hardware transactional memory. What can happen (good or bad) if the processor starts a
transaction, prefetches data, the prefetched data arrives to the cache and is treated by the
cache (and the cache coherence protocol) as a read?

15. How does the Rust help you to avoid data races?

1



16. What does it mean in Rust that an object has moved?

17. Why is there a particular risk for bad performance for software transactional memory for
languages such as C and C++ ? How is that problem avoided in Clojure?

18. What can helgrind help multicore programmers with?

19. What does the atomic test and set machine code instruction do and why do some processor
architectures split that into two separate instructions? What do these instructions do? What
are they sometimes called (there are different answers and any correct is sufficient).

20. Which memory consistency model is used in the following atomic operation in C/C++ ?

count++;

21. How can a write buffer with read bypass break a sequentially consistent machine?

22. What does volatile mean in Java? In C? Why is it not acceptable to use volatile variables in
transactions in C?

23. What is good or bad in your opinion with Scala actors? There obviously are different answers
but the arguments should be valid.

24. What does it mean that a memory write (such as in the Java code object.a = 1) has com-
pleted?

25. What is the purpose of the consume operation in C/C++? Which other operation is it most
similar to and what are the differences?

26. What is the purpose of having tags in the DMA requests on the Cell processor? How can they
be used by the programmer to improve performance?

27. Why are linked-lists and trees problematic in the Cell processor if the main POWER processor
creates them and the synergistic processing units (SPUs) should read them? What is a better
approach to structure data in principle (for the Cell processor)?

28. Suppose you have a very large source code base for numerical computing written as a single-
threaded C program, which will be used by ESS. After some measurements you discover that
in fact only a small fraction of the loops take most of the time. It’s easy to determine that there
actually are no data dependencies in these loops. What would you do (several steps probably)
to exploit a multicore for this code and why? State your assumptions. There are of course
different correct answers.

29. Consider the program fragment below with three threads. Explain how a sequentially consis-
tent machine guarantees that if T2 reads the value one from A, then if T3 reads one from B, T3

will also read one from A. Assume the instructions are executed by the different processors in
the order shown.

int A = B = C = 0;

T1: T2: T3:
A = 1;

if (A)
B = 1;

if (B)
C = A;

2



30. Consider again the code in the previous question, a and assume a machine with release con-
sistency. Why would it not be guaranteed that T3 would see A having the value 1 even if it sees
B having the value 1? What can happen?

What did the programmer forget? Again assume the threads execute their code in the order
T1, T2, T3 as shown (which of course is not guaranteed by simply writing the source code like
that).

31. Consider the code below. Can it be transformed so that a new outer loop can run in pararallel?
Why or why not?

for (i = 1; i <= 10000; i += 1) {
for (j = 1; j <= 10000; j += 1) {

a[i][j] = a[i-1][j] * 2;
b[i][j] = b[i+1][j] * 3;

}
}

32. (1p) Who invented sequential consistency?

33. (1p) In which decade were both of weak ordering and transactional memory invented ?

3


