Fully Automatic Parallelization

- There are huge amounts of source code which is sequential.
- Using OpenMP is semi-automatic
- For the last 50 years or so, there has been a quest for automatically parallelizing sequential programs.
- An approach to parallelize source code
- First try a parallelizing compiler and see what happens
- If it fails then look for compiler feedback and see if you can modify the source
- If not useful, try OpenMP
- If not useful, parallelize manually

Safety of Parallelization

- Does the parallel program produce the same output?
- Invalid if data-races are created, obviously.
- When a for-loop is parallelized, the iterations are run in an unpredictable order.
- Note: changing the iteration order can cause numerical problems
- Note above applies also to sequential programs.

From Simple to Hard Parallelization Problems

- Easiest case: loops with matrix computations and with known loop bounds and array indexes that are linear functions of the loop variables
- We will be more precise shortly
- Very complicated case: code with dynamically allocated data structures with many pointers
- It would be very hard to automatically parallelize Lab 0
- This lecture focuses on matrix computations

Inner vs Outer Loop Parallelization

- In the course EDAN75 Optimizing Compilers you can learn about inner loop parallelization which is used e.g. for automatic SIMD vectorization and software pipelining.
- Here the focus instead is on automatic parallelization for multicores, i.e. outer loop parallelization.
- The foundations for inner and outer loop parallelization are similar, since they both rely on data dependence analysis.

True data dependences

- A true dependence:

S1: $\mathrm{x}=\mathrm{a}+\mathrm{b}$;
S2: y = x + 1;

- It is written $S_{1} \delta^{t} S_{2}$.
- S_{1} must execute before S_{2} in any transformed program.

Data Dependences at Different Levels

- Data dependences can be at several different levels:
- Instructions
- Statements
- Loop iterations
- Functions
- Threads
- Parallelizing compilers usually find parallelism between different loop iterations of a loop.
- If the compiler can determine that there are no dependences between loop iterations then it can either:
- Produce parallel machine code, or
- Produce source code with OpenMP \#pragma parallel for directives.
- If there are dependences, it may still be possible to execute the loop in parallel since perhaps the loop iterations are not totally ordered.

Total vs Partial Order and Loop Iterations

- Integers are totally ordered since we can determine which of a and b is greater if $a \neq b$.
- Consider a directed acyclic graph. In topological sorting you can process any node u if all predecessors of u already have been processed.
- Obviously, we should not execute a loop iteration before its input data has been computed.
- In executing a loop in parallel we perform a topological sort of the loop iterations.
- Conceptually, topological sorting is the major work in parallelization.
- No topological search is performed during compilation or runtime to determine which iterations can be executed, though.
- Instead, new loops are computed (i.e. created) by the compiler.
- If the iterations are a total order no parallelization can be done

Three more data dependences

- In an anti dependence, written $I_{1} \delta^{a} l_{2}, l_{1}$ reads a memory location later overwritten by I_{2}.
- In an output dependence, written $I_{1} \delta^{\circ} I_{2}, I_{1}$ writes a memory location later overwritten by I_{2}.
- In an input dependence, written $I_{1} \delta^{i} I_{2}$, both I_{1} and I_{2} read the same memory location.
- The first three types of dependences create partial orderings among all iterations, which parallelizing compilers exploit by ordering iterations to improve performance.
- Input dependences can give a hint to the compiler that some data will be used so it can try to keep it in the cache (by reordering iterations in a suitable way).

Loop Level Data Dependences

- In the loop

$$
\begin{gathered}
\text { for }(i=3 ; i<100 ; i+=1) \\
a[i]=a[i-3]+x ;
\end{gathered}
$$

- There is a true dependence from iteration i to iteration $i+3$.
- Iteration $i=3$ writes to a_{3} which is read in iteration $i=6$.
- A loop level true dependence means one iteration writes to a memory location which a later reads.

Perfect Loop Nests

- A perfect loop nest L is a nest of m nested for loops $L_{1}, L_{2}, \ldots L_{m}$ such that the body of $L_{i}, i<m$, consists of L_{i+1} and the body of L_{m} consists of a sequence of assignment statements.
- For $1<r \leq m p_{r}$ and q_{r} are linear functions of I_{1}, \ldots, I_{r-1}.

```
for (I}=\mp@subsup{l}{1}{};\mp@subsup{I}{1}{}<=\mp@subsup{q}{1}{};\mp@subsup{l}{1}{}+=1)
```



```
        for (Im}=\mp@subsup{I}{m}{};\mp@subsup{I}{m}{}<=\mp@subsup{q}{m}{};\mp@subsup{I}{m}{}+=1)
        h(I, I_ , .., Im);
        }
    }
}
```


Example Perfect Loop Nest

- All assignments, except to the loop index variables are in the innermost loop.
- There may be any number of assignment statements in the innermost loop.

```
for (i = 0; i < 100; i += 1) \{
    for (j = 3 + i; j < 2 * i + 10; j += 1) \{
        for (k = i - j; k < j - i; k += 1) \{
        \(\mathrm{a}[\mathrm{i}][\mathrm{j}][\mathrm{k}]+=\mathrm{b}[\mathrm{k}][\mathrm{j}][\mathrm{i}]\);
        \}
    \}
\}
```


Loop Bounds

- The lower bound for I_{1} is $p_{10} \leq I_{1}$.
- The lower bound for I_{2} is

$$
\begin{aligned}
I_{2} & \geq p_{20}+p_{21} I_{1} \\
p_{20} & \leq I_{2}-p_{21} I_{1} \\
p_{20} & \leq-p_{21} I_{1}+I_{2}
\end{aligned}
$$

- The lower bound for I_{3} is

$$
\begin{aligned}
I_{3} & \geq p_{30}+p_{31} I_{1}+p_{32} I_{2} \\
p_{30} & \leq I_{3}-p_{31} I_{1}-p_{32} I_{2} \\
p_{30} & \leq-p_{31} I_{1}-p_{32} I_{2}+I_{3}
\end{aligned}
$$

and so forth. We represent this on matrix form as $p_{0} \leq I P$, or... see next slide.

Loop Bounds on Matrix Form

- $P=\left(\begin{array}{ccccc}1 & -p_{21} & -p_{31} & \ldots & -p_{m 1} \\ 0 & 1 & -p_{32} & \ldots & -p_{m 2} \\ 0 & 0 & 1 & \ldots & -p_{m 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1\end{array}\right)$ and $p_{0}=\left(p_{10}, p_{20}, \ldots, p_{m 0}\right)$.
- Similarly, the upper bounds are represented as $\mathrm{IQ} \leq \mathrm{q}_{0}$.
- The loop bounds, thus, are represented by the system:

$$
\left.\mathrm{p}_{0} \leq \begin{array}{l}
\mathrm{IP} \\
\mathrm{IQ} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

Example Non-Perfect Loop Nest

- The assignment to $c_{i j}$ before the innermost loop makes it a non-perfect loop nest.
- Sometimes non-perfect loop nest can be split up, or distributed into perfect loop nests.
- See next slide.

```
for (i = 0; i < 100; i += 1) {
    for (j = 0; j < 100; j += 1) {
        c[i][j] = 0;
        for (k = 0; k < 100; k += 1) {
        c[i][j] += a[i][k] * b[k][j];
        }
    }
}
```


Loop Distribution

- Result of loop distribution.

$$
\begin{aligned}
& \text { for (i = 0; i < 100; i += 1) } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j}<100 \text {; } \mathrm{j}+=1 \text {) } \\
& \text { c[i][j] = 0; } \\
& \text { for (i = 0; i < 100; i += 1) } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j}<100 \text {; } \mathrm{j}+=1 \text {) } \\
& \text { for (k }=0 ; k<100 ; k+=1 \text {) } \\
& \mathrm{c}[\mathrm{i}][\mathrm{j}]+=\mathrm{a}[\mathrm{i}][\mathrm{k}] \text { * } \mathrm{b}[\mathrm{k}][\mathrm{j}] \text {; }
\end{aligned}
$$

Some Terminology

- The index vector $\mathbf{I}=\left(I_{1}, I_{2}, \ldots, I_{m}\right)$ is a vector with index variables.
- The index values of \mathbf{L} are the values of $\left(I_{1}, l_{2}, \ldots, I_{m}\right)$.
- The index space of \mathbf{L} is the subspace of Z^{m} consisting of all the index values.
- An affine array reference is an array reference in which all subscripts are linear functions of the loop index variables.

Easy non-affine references

- Data dependence analysis is normally restricted to affine array references.
- In practice, however, subscripts often contain symbolic constants as shown below which is test s171 in the C version of the Argonne Test Suite for Vectorising Compilers.
- There is no dependence between the iterations in this test.

```
for (i=0; i<n; i++)
    a[i*n] = a[i*n] + b[i];
```


Problematic Non-Affine Index Functions

- In the loop
scanf("\%d", \&x);
for (i = 3; i < 100; i += 1) \{
S1: $a[i]=a[x]+1$;
S2: b[i] $=b[c[i-1]]+2$;
S3: $d[i]=d[2 * i * i * i-3 * i * i]+3 ;$
\}
- Some compilers do runtime testing to take care of S_{1} but it may cause too much overhead if many variables must be checked.

Representing Array References

- Let X be an n-dimensional array. Then an affine reference has the form:
- $X\left[a_{11} i_{1}+a_{21} i_{2} \ldots a_{m 1} i_{m}+a_{01}\right] \ldots\left[a_{1 n} i_{1}+a_{2 n} i_{2} \ldots a_{m n} i_{m}+a_{0 n}\right]$
- This is conveniently represented as a matrix and a vector $X\left[I \mathrm{~A}+\mathrm{a}_{0}\right]$, where
- $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right)$ and $a_{0}=\left(a_{10}, a_{20}, \ldots, a_{n 0}\right)$.
- We will refer to A and a_{0} as the coefficient matrix and the constant term, respectively.

An Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i+=1) \\
& \text { for }(j=2 * i+4 ; j<i+40 ; j+=1) \\
& a[2 i-3 j-1][2 i+j-3]=f(a[-3 i+4 j+1][-i+2 j+7]) ;
\end{aligned}
$$

- The above loop nest has the following two array reference representations:

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
2 & 2 \\
-3 & 1
\end{array}\right) \text { and } a_{0}=(-1,-3) . \\
& B=\left(\begin{array}{cc}
-3 & -1 \\
4 & 2
\end{array}\right) \text { and } b_{0}=(1,7) .
\end{aligned}
$$

The Data Dependence Equation

- For two references $X\left[I A+a_{0}\right]$ and $X\left[I B+b_{0}\right]$ to refer to the same array element there must be two index values, i and j such that $i A+a_{0}=j B+b_{0}$ which we can write as $i A-j B=b_{0}-a_{0}$.
- This system of Diophantine equations has n (the dimension of the array X) scalar equations and $2 m$ variables, where m is the nesting depth of the loop.
- It can also be written in the following form:

$$
(i ; j)\binom{A}{-B}=b_{0}-a_{0}
$$

- We solve the system of linear Diophantine equations above using a method presented shortly.

Dependence Distances

- Let \prec_{ℓ} be a relation in Z^{m} such that $\mathrm{i} \prec \mathrm{j}$ if $i_{1}=j_{1}, i_{2}=j_{2}, \ldots$, $i_{l-1}=j_{l-1}$, and $i_{l}<j_{l}$.
- For example: $(1,3,4) \prec_{3}(1,3,9)$.
- The lexicographic order \prec in Z^{m} is the union of all the relations \prec_{ℓ} : $\mathrm{i} \prec \mathrm{j}$ iff $\mathrm{i} \prec_{\ell} \mathrm{j}$ for some ℓ in $1 \leq \ell \leq m$.
- The sequential execution of the iterations of a loop nest follows the lexicographic order.
- Assume that $(i ; j)$ is a solution and that $i \prec j$. Then $d=j-i$ is the dependence distance of the dependence.

Uniform Dependence Distance

- If a dependence distance d is a constant vector then the dependence is said to be uniform.
- Examples:
- $d=(1,2)$ is uniform - required for parallelization.
- $\mathrm{d}=\left(1, t_{2}\right)$ is nonuniform - loop cannot be parallelized.
- All unique d are put in a matrix as rows - but row order does not matter since it is really just a set of all d

Loop Independent and Loop Carried Dependences

- A loop independent dependence is a dependence such that $\mathrm{d}=\mathrm{j}-\mathrm{i}=(0, \ldots, 0)$.
- A loop independent dependence does not prevent concurrent execution of different iterations of a loop. Rather, it constrains the scheduling of instructions in the loop body.
- A loop carried dependence is a dependence which is not loop independent, or, in other words, the dependence is between two different iterations of a loop nest.
- A dependence has level ℓ if in $d=j-i, d_{1}=0, d_{2}=0, \ldots, d_{l-1}=0$, and $d_{l}>0$.
- Only a loop carried dependence has a level, and it is only the loop at that level which needs to be executed sequentially.

The GCD Test

- Recall that a Diophantine equation $a x+b y=c$ has a solution only if $\operatorname{gcd}(a, b)$ divides c
- The GCD test was invented at Texas Instruments and first described 1973.
- Consider the loop

$$
\begin{aligned}
\text { for }(i= & l b ; i<=u b ;++i) \\
& x[a 1 * i+c 1]=x[a 2 * i+c 2]+y ;
\end{aligned}
$$

- To prove independence, we must show that the Diophantine equation

$$
a_{1} \dot{i}_{1}-a_{2} \dot{i}_{2}=c_{2}-c_{1}
$$

has no solutions.

- for (i = 1; i <= 100; ++i)

$$
\mathrm{x}[2 \text { i }]=\mathrm{x}[2 * \mathrm{i}+1]+\mathrm{y} ; / / \text { even and odd }
$$

Weaknesses of The GCD Test

- There are two weaknesses of the GCD test:
(1) It does not exploit knowledge about the loop bounds.
(2) Most often the gcd is one.
- The first weakness means the GCD Test might be unable to prove independence despite the solution actually lies outside the index space of the loop.
- The second weakness means independence usually cannot be proved.

GCD Test for Nested Loops and Multdimensional Arrays

- The GCD Test can be extended to cover nested loops and multidimensional arrays.
- The solution is then a vector and it usually contains unknowns.
- The Fourier-Motzkin Test described shortly takes the solution vector from this GCD Test and checks whether the solution lies within the loop bounds.
- Next we will look at unimodular matrices and Fourier elimination used by the Fourier-Motzkin Test.

Unimodular Matrices

- An integer square matrix A is unimodular if its determinant $\operatorname{det}(\mathrm{A})= \pm 1$.
- If A and B are unimodular, then A^{-1} exists and is itself unimodular, and $A \times B$ is unimodular.
- \mathcal{I} is the $m \times m$ identity matrix.

Elementary Row Operations

- The operations
- reversal: multiply a row by -1 ,
- interchange: interchange two rows, and
- skewing: add an integer multiple of one row to another row, are called the elementary row operations.
- With each elementary row operation, there is a corresponding elementary matrix.

Performing Elementary Row Operations

- To perform an elementary row operation on a matrix A, we can premultiply it with the corresponding elementary matrix.
- Assume we wish to interchange rows 1 and 3 in a 3×3 matrix A. The resulting matrix is formed by

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \times \mathrm{A} .
$$

- The elementary matrices are all unimodular.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

and

3×3 Upper Skewing Matrices

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & z & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
z & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
\text { and } & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
z & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & z & 1
\end{array}\right) .
\end{aligned}
$$

Echelon Matrices

- Let l_{i} denote the column number of the first nonzero element of matrix row i.
- A given $m \times n$ matrix A, is an echelon matrix if the following are satisfied for some integer ρ in $0 \leq \rho \leq m$:
- rows 1 through ρ are nonzero rows,
- rows $\rho+1$ through m are zero rows,
- for $1 \leq i \leq \rho$, each element in column I_{i} below row i is zero, and
- $I_{1}<I_{2}<\ldots<I_{\rho}$.
- Which of the following is not an echelon matrix?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
0 & 0 & 7
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6 \\
0 & 0 & 0
\end{array}\right)
$$

Echelon Reduction

- Given an $m \times n$ matrix A, Echelon reduction finds two matrices U and S such that $U \times A=S$, where U is unimodular and S is echelon.
- U remains unimodular since we only apply elementary row operations.

```
function echelon_reduce \((A)\)
    \(\mathrm{U} \leftarrow \mathrm{I}_{\mathrm{m}}\)
    \(S \leftarrow A\)
    \(i_{0} \leftarrow 0\)
    for \((j \leftarrow 1 ; j \leq n ; j \leftarrow j+1)\{\)
            if (there is a nonzero \(s_{i j}\) with \(i_{0}<i \leq m\) ) \{
                \(i_{0} \leftarrow i_{0}+1\)
                \(i=m\)
            while \(\left(i \geq i_{0}+1\right)\{\)
                        while \(\left(s_{i j} \neq 0\right)\) \{
                        \(\sigma \leftarrow \operatorname{sign}\left(s_{(i-1) j} \times s_{i j}\right)\)
                        \(z \leftarrow\left\lfloor\left|s_{(i-1) j}\right| /\left|s_{i j}\right|\right\rfloor\)
                        subtract \(\sigma z\) (row i) from (row \(i-1\) ) in ( \(\mathbf{U} ; \mathbf{S}\) )
                        interchange rows \(i\) and \(i-1\) in ( \(\mathbf{U} ; \mathbf{S}\) )
                \}
                        \(i \leftarrow i-1\)
            \}
            \}
    \}
    return \(U\) and \(S\)
end
```


Example Echelon Reduction

- We will now show how one can echelon reduce the following matrix:

$$
A=\left(\begin{array}{rr}
2 & 2 \\
-3 & 1 \\
3 & 1 \\
-4 & -2
\end{array}\right)
$$

- We start with with $U=I_{4}$ and $S=A$ which we write as:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & -3 & 1 \\
0 & 0 & 1 & 0 & 3 & 1 \\
0 & 0 & 0 & 1 & -4 & -2
\end{array}\right)
$$

- Then we will eliminate the nonzero elements in S starting with $s_{41}, s_{31}, s_{21}, s_{42}$ and so on.

Example Echelon Reduction

- $j=1, i_{0}=1, i=4$. We always wish to eliminate $s_{i j}$, which currently means S_{41}.
- $\sigma \leftarrow-1$ and $z \leftarrow 0$. Nothing is subtracted from row 3 .
- Then rows 3 and 4 are interchanged in (U;S), resulting in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & -3 & 1 \\
0 & 0 & 0 & 1 & -4 & -2 \\
0 & 0 & 1 & 0 & 3 & 1
\end{array}\right)
$$

Example Echelon Reduction

- We continue the inner while loop and find that $\sigma \leftarrow-1$ and $z \leftarrow 1$. Then $-1 \times$ row 4 is subtracted from row 3 , resulting in:

$$
(\mathrm{U} ; \mathrm{S})=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & -3 & 1 \\
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 0 & 1 & 0 & 3 & 1
\end{array}\right)
$$

- Then rows 3 and 4 are interchanged, resulting in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & -3 & 1 \\
0 & 0 & 1 & 0 & 3 & 1 \\
0 & 0 & 1 & 1 & -1 & -1
\end{array}\right)
$$

Example Echelon Reduction

- s_{41} is still zero, and the inner while loop is continued and $\sigma \leftarrow-1$ and $z \leftarrow 3$. Then $-3 \times$ row 4 is subtracted from row 3:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & -3 & 1 \\
0 & 0 & 4 & 3 & 0 & -2 \\
0 & 0 & 1 & 1 & -1 & -1
\end{array}\right)
$$

- Then rows 3 and 4 are interchanged, resulting in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & -3 & 1 \\
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 0 & 4 & 3 & 0 & -2
\end{array}\right)
$$

- Now the first $i j$ has become zero and i is decremented.

Example Echelon Reduction

- $j=1, i_{0}=1, i=3$. We now wish to eliminate $s_{31} . \sigma \leftarrow+1$ and $z \leftarrow 3$. Then $3 \times$ row 3 is subtracted from row 2 :

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 1 & -3 & -3 & 0 & 4 \\
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 0 & 4 & 3 & 0 & -2
\end{array}\right) .
$$

- Then rows 2 and 3 are interchanged, resulting in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 1 & -3 & -3 & 0 & 4 \\
0 & 0 & 4 & 3 & 0 & -2
\end{array}\right)
$$

Example Echelon Reduction

- $\mathrm{j}=1, \mathrm{i}_{0}=1, \mathrm{i}=2$. We now wish to eliminate $s_{21} . \sigma \leftarrow-1$ and $z \leftarrow 2$. Then $-2 \times$ row 2 is subtracted from row 1 :

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 1 & -3 & -3 & 0 & 4 \\
0 & 0 & 4 & 3 & 0 & -2
\end{array}\right)
$$

- Interchanging rows 2 and 1 results in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
0 & 0 & 1 & 1 & -1 & -1 \\
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 1 & -3 & -3 & 0 & 4 \\
0 & 0 & 4 & 3 & 0 & -2
\end{array}\right)
$$

Example Echelon Reduction

- $j=2, i_{0}=2, i=4$. We now wish to eliminate $s_{42} . \sigma \leftarrow-1$ and $z \leftarrow 2$. $-2 \times$ row 4 is subtracted from row 3 :

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
0 & 0 & 1 & 1 & -1 & -1 \\
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 1 & 5 & 3 & 0 & 0 \\
0 & 0 & 4 & 3 & 0 & -2
\end{array}\right)
$$

- Interchanging rows 4 and 3 results in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
0 & 0 & 1 & 1 & -1 & -1 \\
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 4 & 3 & 0 & -2 \\
0 & 1 & 5 & 3 & 0 & 0
\end{array}\right)
$$

Example Echelon Reduction

- $\mathrm{j}=2, \mathrm{i}_{0}=2, \mathrm{i}=3$. We now wish to eliminate $s_{32} . \sigma \leftarrow 0$ and $z \leftarrow 0$. Nothing is subtracted from row 2 but rows 3 and 2 are interchanged:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
0 & 0 & 1 & 1 & -1 & -1 \\
0 & 0 & 4 & 3 & 0 & -2 \\
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 1 & 5 & 3 & 0 & 0
\end{array}\right)
$$

At this point S is an echelon matrix and the algorithm stops (the outer while loop since $i=i_{0}$). As will turn out to be convenient later, we prefer positive values of s_{11} and therefore multiply with -1 finally resulting in:

$$
(U ; S)=\left(\begin{array}{rrrr|rr}
0 & 0 & -1 & -1 & 1 & 1 \\
0 & 0 & 4 & 3 & 0 & -2 \\
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 1 & 5 & 3 & 0 & 0
\end{array}\right)
$$

Recall from previous slides in this lecture

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i+=1) \\
& \text { for }(j=2 * i+4 ; j<i+40 ; j+=1) \\
& a[2 i-3 j-1][2 i+j-3]=f(a[-3 i+4 j+1][-i+2 j+7]) ;
\end{aligned}
$$

- $A=\left(\begin{array}{cc}2 & 2 \\ -3 & 1\end{array}\right)$ and $a_{0}=(-1,-3)$.

$$
B=\left(\begin{array}{cc}
-3 & -1 \\
4 & 2
\end{array}\right) \text { and } b_{0}=(1,7)
$$

- We want to find integer solutions to:

$$
(i ; j)\binom{A}{-B}=b_{0}-a_{0}
$$

- But better if we can prove none exist!

Solving a dependence equation

- Two references for the same variable: a matrix with n dimensions
- $m / 2$ for-loops m loop index variables (i, j, k etc for each reference)
- That is: the loop index variables $i_{1}, i_{2}, \ldots, i_{m / 2}$

$$
x A=c
$$

- x is an $1 \times m$ integer matrix
- A is an $m \times n$ integer matrix
- c is an $1 \times n$ integer matrix
- We find U and S such that $U A=S$.
- Then try to solve $\mathrm{tS}=\mathrm{c}$
- If there is solution, then: $\mathrm{c}=\mathrm{tS}=\mathrm{tUA}$.
- So $x=t U$

An example

- Consider $x \mathrm{~A}=\mathrm{c}$ with

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right)\left(\begin{array}{rr}
2 & 2 \\
-3 & 1 \\
3 & 1 \\
-4 & -2
\end{array}\right)=\left(\begin{array}{ll}
2 & 4
\end{array}\right)
$$

- Firstly we use echelon reduction to find the matrices U and S.
- Then we solve $\mathrm{tS}=\mathrm{c}$

$$
\left(\begin{array}{llll}
t_{1} & t_{2} & t_{3} & t_{4}
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
0 & -2 \\
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 4
\end{array}\right)
$$

We find that $\mathrm{t}=\left(2,-1, t_{3}, t_{4}\right)$, where t_{3} and t_{4} are arbitrary integers.

Linear Diophantine Equations

- We then find x :

$$
\begin{aligned}
\mathrm{x}=\mathrm{tU}= & \left(\begin{array}{llll}
2 & -1 & t_{3} & t_{4}
\end{array}\right)\left(\begin{array}{rrrr}
0 & 0 & -1 & -1 \\
0 & 0 & 4 & 3 \\
1 & 0 & 2 & 2 \\
0 & 1 & 5 & 3
\end{array}\right)= \\
& \left(t_{3}, t_{4}, 2 t_{3}+5 t_{4}-7,2 t_{3}+3 t_{4}-5\right)
\end{aligned}
$$

Fourier Elimination

- Suppose we find an integer solution x to $\times \mathrm{A}=\mathrm{c}$.
- The next question is if the solution is within the loop bounds.
- Unfortunately, the problem of solving a linear integer inequality is NP-complete.
- Instead the compiler looks for a rational solution and only if no rational solution within the loop bounds exists, it ignores that pair of array references.

Fourier Elimination

- In 1827 Fourier published a method for solving linear inequalities in the real case.
- This is sometimes called Fourier-Motzkin elimination
- Utpal Banerjee, a leading compiler researcher at Intel has written a very good book series about parallelization calls it Fourier's method of elimination.

Fourier Elimination

- An interesting question is how frequently Fourier elimination finds a real solution when there is no integer solution. Some special cases can be exploited.
- For instance, if a variable x_{i} must satisfy $2.2 \leq x_{i} \leq 2.8$ then there is no integer solution.
Otherwise, if we find eg that $2.2 \leq x_{i} \leq 4.8$ then we may try the two cases of setting $x_{i}=3$ and $x_{i}=4$, and see if there still is a real solution.
- It is easiest to understand Fourier elimination if we first look at an example.

Fourier Elimination

- Assume we wish to solve the following system of linear inequalities.

$$
\begin{aligned}
2 x_{1}-11 x_{2} & \leq 3 \\
-3 x_{1}+2 x_{2} & \leq-5 \\
x_{1}+3 x_{2} & \leq 4 \\
-2 x_{1} &
\end{aligned}
$$

- We will first eliminate x_{2} from the system, and then check whether the remaining inequalities can be satisfied. To eliminate x_{2}, we start out with sorting the rows with respect to the coefficients of x_{2} :

$$
\begin{aligned}
-3 x_{1}+2 x_{2} & \leq-5 \\
x_{1}+3 x_{2} & \leq 4 \\
2 x_{1}-11 x_{2} & \leq 3 \\
-2 x_{1} &
\end{aligned}
$$

Fourier Elimination

- First we want to have rows with positive coefficients of x_{2}, then negative, and lastly zero coefficients.
- Next we divide each row by its coefficient (if it is nonzero) of x_{2} :

$$
\begin{array}{r}
\frac{-3}{2} x_{1}+x_{2} \leq \frac{-5}{2} \\
\frac{1}{3} x_{1}+x_{2} \leq \frac{4}{3} \\
\frac{2}{11} x_{1}-x_{2} \geq \frac{3}{11}
\end{array}
$$

Of course, the \leq becomes \geq when dividing with a negative coefficient. We can now rearrange the system to isolate x_{2} :

$$
\begin{aligned}
& x_{2} \leq \frac{3}{2} x_{1}-\frac{5}{2} \\
& x_{2} \leq-\frac{1}{3} x_{1}+\frac{4}{3} \\
& \frac{2}{11} x_{1}-\frac{3}{11} \leq \begin{array}{l}
x_{2}
\end{array}
\end{aligned}
$$

Fourier Elimination

- At this point, we make a record of the minimum and maximum values that x_{2} can have, expressed as functions of x_{1}. We have:

$$
b_{2}\left(x_{1}\right) \leq x_{2} \leq B_{2}\left(x_{1}\right)
$$

where

$$
\begin{array}{lr}
b_{2}\left(x_{1}\right)= & \frac{2}{11} x_{1} \\
B_{2}\left(x_{1}\right)=\min \left(\frac{3}{2} x_{1}-\frac{5}{2},-\frac{1}{3} x_{1}+\frac{4}{3}\right)
\end{array}
$$

Fourier Elimination

- To eliminate x_{2} from the system, we simply combine the inequalities which had positive coefficients of x_{2} with those which had negative coefficients (ie, one with positive coefficient is combined with one with negative coefficient):

$$
\begin{array}{r}
\frac{2}{11} x_{1}-\frac{3}{11} \leq \frac{3}{2} x_{1}-\frac{5}{2} \\
\frac{2}{11} x_{1}-\frac{3}{11} \leq-\frac{1}{3} x_{1}+\frac{4}{3}
\end{array}
$$

- These are simplified and the inequality with the zero coefficient of x_{2} is brought back:

$$
\begin{array}{rlr}
-\frac{29}{22} x_{1} & \leq & -\frac{49}{22} \\
-\frac{17}{33} x_{1} & \leq & \frac{53}{33} \\
-2 x_{1} & \leq & -3
\end{array}
$$

Fourier Elimination

- We can now repeat parts of the procedure above:

$$
\begin{aligned}
& x_{1} \leq \frac{53}{17} \\
& x_{1} \geq \frac{49}{29} \\
& x_{1} \geq \frac{3}{2}
\end{aligned}
$$

- We find that

$$
\begin{aligned}
& b_{1}()=\max (49 / 29,3 / 2)=49 / 29 \\
& B_{1}()= 53 / 17
\end{aligned}
$$

The solution to the system is $\frac{49}{29} \leq x_{1} \leq \frac{53}{17}$ and $b_{2}\left(x_{1}\right) \leq B_{2}\left(x_{1}\right)$ for each value of x_{1}.

Fourier Elimination

```
procedure fourier_motzkin_elimination ( \(x, A, c\) )
    \(r \leftarrow \bar{m}, \quad s \leftarrow n, \quad \mathrm{~T} \leftarrow \mathrm{~A}, \quad \mathrm{q} \leftarrow \mathrm{c}\)
    while (1) \{
    \(n_{1} \leftarrow\) number of inqualities with positive \(t_{r j}\)
    \(n_{2} \leftarrow n_{1}+\) number of inqualities with negative \(t_{r j}\)
    Sort the inequalities so that the \(n_{1}\) with \(t_{r j}>0\) come first,
        then the \(n_{2}-n_{1}\) with \(t_{r j}<0\) come next,
        and the ones with \(t_{r j}=0\) come last.
    for ( \(i=1 ; i \leq r-1 ; i \leftarrow i+1\) )
        for \(\left(j=1 ; i \leq n_{\mathbf{2}} ; j \leftarrow j+1\right)\)
    for \(\left(j=1 ; i \stackrel{t_{i j}}{\leq} \leftarrow t_{\mathbf{2}} ; j / t_{r j}{ }^{\leftarrow} j+1\right)\)
    \(q_{j} \leftarrow q_{j} / t_{r j}\)
    if \(\left(n_{2}>n_{1}\right)\)
        \(b_{r}\left(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{r-\mathbf{1}}\right)=\max _{n_{\mathbf{1}}+\mathbf{1} \leq j \leq n_{\mathbf{2}}}\left(-\sum_{i=\mathbf{1}}^{r-\mathbf{1}} t_{i j} x_{i}+q_{i}\right)\)
    else
        \(b_{r} \leftarrow-\infty\)
    if \(\left(n_{1}>0\right)\)
        \(j_{r}\left(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{r-\mathbf{1}}\right)=\min _{n_{\mathbf{1}}+\mathbf{1} \leq j \leq n_{\mathbf{2}}}\left(-\sum_{i=\mathbf{1}}^{r-\mathbf{1}} t_{i j} x_{i}+q_{i}\right)\)
    else
        \(B_{r} \leftarrow \infty\)
    if \((r=1)\)
        return make_solution()
```


Fourier Elimination

```
/* We will now eliminate \(x_{r}\). */
\(s^{\prime} \leftarrow s-n_{2}+n_{1}\left(n_{2}-n_{1}\right)\)
if \(\left(s^{\prime}=0\right)\) \{
    /* We have not discovered any inconsistency and */
    /* we have no more inequalities to check. */
    /* The system has a solution. */
    The solution set consists of all real vectors ( \(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{m}\) ),
    where \(x_{r-1}, x_{r-\mathbf{2}}, \ldots, x_{\mathbf{1}}\) are chosen arbitrarily, and
    \(x_{m}, x_{m-1}, \ldots, x_{r}\) must satisfy
    \(b_{i}\left(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{i-1}\right) \leq x_{i} \leq B_{i}\left(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{i-1}\right)\) for \(r \leq i \leq m\).
    return solution set.
\}
/* There are now \(s^{\prime}\) inequalities in \(r-1\) variables. */
The new system of inequalities is made of two parts:
\(\sum_{i}^{r-1}\left(t_{i k}-t_{i l}\right) x_{i} \leq q_{k}-q_{j}\) for \(1 \leq k \leq n_{1}, n_{\mathbf{1}}+\mathbf{1} \leq j \leq n_{\mathbf{2}}\)
\(\sum_{i}^{r-1} t_{i j} x_{i} \leq q_{j}\) for \(n_{\mathbf{2}}+\mathbf{1} \leq j \leq s\)
and becomes by setting \(r=r \leftarrow 1\) and \(s \leftarrow s^{\prime}\) :
\(\sum_{i}^{r} t_{i j} x_{i} \leq q_{j}\) for \(1 \leq j \leq s\)
```

\} end
function make_solution ()
/* We have come to the last variable $x_{1} .{ }^{*} /$
if ($b_{1}>B_{1}$ or (there is a $q_{j}<0$ for $\left.n_{2}+1 \leq j \leq s\right)$)
return there is no solution
The solution set consists of all real vectors ($x_{\mathbf{1}}, x_{2}, \ldots, x_{m}$),
such that $b_{i}\left(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{m}\right) \leq x_{i} \leq B_{i}\left(x_{\mathbf{1}}, x_{\mathbf{2}}, \ldots, x_{m}\right)$ for $1 \leq i \leq m$.
return solution set.
end

Summary

- In the case of a loop nest of height m and an n-dimensional array, we use the matrix representation of the references $i A+a_{0}=j B+b_{0}$, or equivalently:

$$
(i ; j)\binom{A}{-B}=b_{0}-a_{0},
$$

where the \mathbf{A} and \mathbf{B} have m rows and n columns.

- We find a $2 m \times 2 m$ unimodular matrix \mathbf{U} and a $2 m \times n$ echelon matrix S such that

$$
U\binom{A}{-B}=S
$$

- If there is a $2 m$ vector \mathbf{t} which satisfies $\mathrm{tS}=\mathrm{b}_{0}-\mathrm{a}_{0}$ then the GCD test cannot exclude dependence, and if so...
- ..., the computed t will be input to the Fourier-Motzkin Test.

The Fourier-Motzkin Test

- If the GCD Test found a solution vector t to $t S=c$, these solutions will be tested to see if they are within the loop bounds.
- Recall we wrote

$$
x=(i ; j)\binom{A}{-B}=b_{0}-a_{0} .
$$

- We find x from:

$$
x=(i ; j)=t U
$$

- With U_{1} being the left half of U and U_{2} the right half we have:

$$
\begin{aligned}
& \mathrm{i}=\mathrm{tU}_{1} \\
& \mathrm{j}=\mathrm{tU}_{2}
\end{aligned}
$$

- These should be used in the loop bounds constraints.

The Fourier Motzkin Test

- Recall the original loop bounds are:

$$
\left.\mathrm{p}_{0} \leq \begin{array}{l}
\mathrm{IP} \\
\mathrm{IQ} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

- The solution vector t must satisfy:

$$
\left.\mathrm{p}_{0} \leq \mathrm{tU}_{1} \mathrm{P} \text { } \mathrm{tU}_{1} \mathrm{Q} \leq \mathrm{q}_{0}\right\}
$$

- If there is no integer solution to this system, there is no dependence.
- Recall, however, the system is solved with real or rational numbers so the Fourier-Motzkin Test may fail to exclude independence.

After Data Dependence Analysis

- When we have performed data dependence analysis of all pairs of references to the same arrays, we have a dependence matrix, denoted D.
- Some rows will be due to some array and other rows due to some other arrays.
- It's the dependence matrix that determines which transformations we can do.
- As mentioned, in the optimizing compilers course inner loop transformations are studied for SIMD vectorization and software pipelining.
- We will look at outer loop parallelization.

Unimodular Transformations

- A unimodular transformation is a loop transformation completely expressed as a unimodular matrix U.
- A loop nest L is changed to a new loop nest L_{U} with loop index variables:

$$
\begin{gathered}
\mathrm{K}=\mathrm{IU} \\
\mathrm{I}=\mathrm{KU} \mathrm{U}^{-1}
\end{gathered}
$$

- The same iterations are executed but in a different order.
- A new iteration order might make parallel execution possible.
- Before generating code for the new loop, the loop bounds for K must be computed from the original bounds:

$$
\left.\mathrm{p}_{0} \leq \begin{array}{l}
\mathrm{IP} \\
\mathrm{IQ} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

Computing the New Index Variables

- With

$$
\left.\begin{array}{rl}
\mathrm{p}_{0} \leq \mathrm{IP} & \\
\mathrm{IQ} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

We use Fourier elimination also to find the loop bounds from

$$
\left.\mathrm{p}_{0} \leq \begin{array}{l}
\mathrm{KU} U^{-1} \mathrm{P} \\
\mathrm{KU} \mathrm{U}^{-1} \mathrm{Q} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

- The bounds are found starting with k_{1}, k_{2} etc.
- This is the reason why we want to have an invertible transformation matrix.

New Array References

- All array references are rewritten to use the new index variables.
- Conceptually we could calculate, at the beginning of each loop iteration,

$$
\mathrm{I}=\mathrm{KU} \mathrm{U}^{-1}
$$

and then use this vector I in the original references, on the form:

$$
x\left[I A+\mathrm{a}_{0}\right]
$$

- We don't do that of course and instead replace each reference with

$$
x\left[K U^{-1} \mathrm{~A}+\mathrm{a}_{0}\right]
$$

- Here $\mathrm{KU}^{-1} \mathrm{~A}+\mathrm{a}_{0}$ can be calculated at compile-time.

The Distance Matrix

- The set of all vectors of dependence distances is represented by the distance matrix D.
- We are free to swap the rows of D since it really is a set of dependences.
- Unimodular transformations require that all dependences are uniform, i.e. with known constants.
- Consider a uniform dependence vector $\mathrm{d}=\mathrm{j}-\mathrm{i}$.
- With index variables $K=I U$ we have $d_{U}=j U-i U=d U$.
- Therefore, given a dependence matrix D and a unimodular transformation U , the dependences in the new loop L_{U} become:

$$
D_{U}=D U
$$

Valid Distance Matrices

- The sign, lexicographically, of a vector is the sign of the first nonzero element.
- A distance vector can never be lexicographically negative since it would mean that some iteration would depend on a future iteration.
- Therefore no row in the new distance matrix $\mathrm{D}_{\mathrm{U}}=\mathrm{DU}$ may be lexicographically negative.
- If we would discover a lexicographically negative row in D_{U}, that loop transformation is invalid, such as the second row of the following D_{U} :

$$
D_{U}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)
$$

Outer Loop Parallelization

- By outer loops is meant all loops starting with the outermost loop.
- While we always can find a unimodular matrix through which we can parallelize the inner loops, this is not the case for outer loops.
- To parallelize the inner loops, we need to assure that all loop carried dependences are carried at the outermost loop.
- In other words, the leftmost column of the distance matrix D_{U} simply should consist only of positive numbers!
- For outer loop parallelization, D_{U} instead should have leading zero columns.

Rank of a Matrix

- A column of a matrix is linearly independent if it cannot be expressed as a linear combination of the other columns.
- The rank of a matrix is the number of linearly independent columns.
- For instance, an identity matrix I_{m} with m columns has $\operatorname{rank}\left(I_{m}\right)=m$.
- Any unimodular $m \times m$-matrix U has $\operatorname{rank}(U)=m$.
- A matrix with zero columns must have a rank less than the number of columns.
- So, since $D_{U}=D U$, if D_{U} should have a rank less than m, it must be D which contributes with that.

Outer Loop Parallelization Example

- Assume we have the distance matrix \mathbf{D} defined as:

$$
\mathrm{D}=\left(\begin{array}{rrr}
6 & 4 & 2 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)
$$

- With this distance matrix, only the innermost loop can be executed in parallel.
- We want a D_{U} with positive rows and zero columns to the left.
- For example:

$$
\mathrm{D}_{\mathrm{U}}=\left(\begin{array}{lll}
0 & ? & ? \\
0 & ? & ? \\
0 & ? & ?
\end{array}\right)=\left(\begin{array}{rrr}
6 & 4 & 2 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right) \mathrm{U}
$$

- If $\operatorname{rank}(D)=3$ then such a U cannot exist.

Steps towards Finding U

- We start with transposing D:

$$
D^{t}=\left(\begin{array}{rrr}
6 & 0 & 1 \\
4 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)
$$

- Using the Echelon reduction algorithm, we compute:
- a unimodular matrix V
- an echelon matrix S
- Such that $V^{t}=S$, e.g.

$$
\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & -1 & -1
\end{array}\right) D^{\mathbf{t}}=\left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

More Steps towards Finding U

- We have $\mathrm{VD}^{\mathrm{t}}=\mathrm{S}$:

$$
\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{rrr}
6 & 0 & 1 \\
4 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

- Assume we wish to find $n=1$ parallel outer loops.
- Then we find an $m \times(n+1)$ matrix A such that DA has n zero columns and then a column with elements greater than zero.
- This A will be used to find U.
- How can we find A ?
- Multiplying the last row of V with the columns of D^{t} produces the zero row in S .
- Thus, the first column of A should be the last row of V, i.e.

$$
\mathrm{DA}=\left(\begin{array}{rrr}
6 & 4 & 2 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & ? \\
-1 & ? \\
-1 & ?
\end{array}\right)=\left(\begin{array}{ll}
0 & ? \\
0 & ? \\
0 & ?
\end{array}\right)
$$

Finding the Rest of A

- Finding the last column of A is easy. Denote it u.

$$
\mathrm{DA}=\left(\begin{array}{rrr}
6 & 4 & 2 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & u_{1} \\
-1 & u_{2} \\
-1 & u_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & \geq 1 \\
0 & \geq 1 \\
0 & \geq 1
\end{array}\right)
$$

- Multiplying each row of D with u should produce a positive number:

$$
\begin{aligned}
& 6 u_{1}+4 u_{2}+2 u_{3} \\
& \geq 1 \\
& u_{2} \geq u_{3} \\
& u_{1}+u_{3} \geq 1
\end{aligned}
$$

- We find u to be e.g. $u=(1,1,0)$.

$$
A=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
-1 & 0
\end{array}\right)
$$

Computing U

- Given a matrix A, using a variant of the algorithm for echelon reduction, we can find a unimodular matrix U such that $\mathrm{A}=\mathrm{UT}$
- i.e.

$$
\mathrm{A}=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
-1 & 0
\end{array}\right)=\mathrm{UT}=\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{rr}
-1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Computing L_{U}

- With this loop transformation matrix U, we get the following new dependence matrix D_{U} :

$$
\mathrm{D}_{\mathrm{U}}=\mathrm{DU}
$$

- i.e.

$$
\mathrm{D}_{\mathrm{U}}=\left(\begin{array}{rrr}
0 & 10 & 6 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)=\mathrm{DU}=\left(\begin{array}{rrr}
6 & 4 & 2 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- The compiler does not actually need to compute D_{U} but it is a nice internal check to verify no row is lexicographically negative.
- The new loop L_{U} is constructed as explained before:
- A loop nest L is changed to a new loop nest L_{U} with loop index variables:

$$
K=I U
$$

- New array references and new loop bounds must be computed.
- We have already seen both of these two, but repeat them for convenience on the next two slides.

Recall: Computing the New Index Variables

- With

$$
\left.\begin{array}{rl}
\mathrm{p}_{0} \leq \mathrm{IP} & \\
\mathrm{IQ} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

We use Fourier elimination to find the loop bounds from

$$
\left.\mathrm{p}_{0} \leq \begin{array}{l}
\mathrm{KU} U^{-1} \mathrm{P} \\
\mathrm{KU} \mathrm{U}^{-1} \mathrm{Q} \leq \mathrm{q}_{0}
\end{array}\right\}
$$

- The bounds are found starting with k_{1}, k_{2} etc.

Recall: New Array References

- All array references are rewritten to use the new index variables.
- Conceptually we could calculate, at the beginning of each loop iteration,

$$
\mathrm{I}=\mathrm{KU}^{-1}
$$

and then use this vector I in the original references, on the form:

$$
x\left[I A+a_{0}\right]
$$

- We don't do that of course and instead replace each reference with

$$
x\left[K U^{-1} \mathrm{~A}+\mathrm{a}_{0}\right]
$$

- Here $\mathrm{KU}^{-1} \mathrm{~A}+\mathrm{a}_{0}$ can be calculated at compile-time.

Summary

- Using linear algebra it is sometimes possible to automatically parallelize for-loops
- Optimizing compilers rewrite loops with while or gotos to for-loops when possible
- All these transformations can be expressed in a matrix which is then used to generate a new loop (this belongs to the category of elegant computer science).

