
Memory consistency models

Contents of Lecture 5
Cache memories
Sequential consistency
Cache coherence protocols
Weak ordering
Release consistency

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 1 / 48

jonasskeppstedt.net


A simple cache

What is needed is a small memory on the same chip as the processor.
If we describe our hardware in C, then a CPU could look like:

typedef struct {
int reg[32];
int pc;
struct {

bool valid;
int data;
int address;

} cache_array[8];
} cpu_t;

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 2 / 48

jonasskeppstedt.net


Data and Address

We have now a cache which can store eight popular words.
The cache array contains eight pairs of data and address.
There is also a boolean called valid which tells us whether the data
and address are valid for that row.
Suppose the compiler has decided that a global variable X should be
put at the address 293, or 0x125, or 0001 0010 0101.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 3 / 48

jonasskeppstedt.net


Using our Cache

When the program (or CPU) wants to read variable X, it should check
whether any of the eight rows has valid = true and address = 293
If the CPU found one such row (or, let’s call it line), then the CPU
can take the data from that line and avoid waiting for the slow
memory! Great!
We must call this event something: a cache hit
It can save us 100 clock cycles.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 4 / 48

jonasskeppstedt.net


Load Instruction

In hardware all iterations are executed concurrently!!
The openmp directive is here to make you alert on that this is not a
sequential loop.

case LD: found = false;
address = source1 + constant;
#pragma omp parallel for
for (i = 0; i < 8; i++) {

if (cache_array[i].valid &&
cache_array[i].address == address) {
data = cache_array[i].data;
found = true;
break;

}
}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 5 / 48

jonasskeppstedt.net


Cache replacement

Since the cache by definition is smaller than RAM memory it cannot
contain everything
Cache replacement refers to putting something else somewhere in the
cache
So the old data at that row will be replaced
If the old data was modified, it needs to be written to RAM memory
For simplicity in the next slide we always write to RAM memory

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 6 / 48

jonasskeppstedt.net


Load Continued

if (!found) {
i = select_row();

if (cache_array[i].valid) // save old data to memory
memory[cache_array[i].address] = cache_array[i].data;

// read our data from memory
data = memory[address];

// save our data in the cache
cache_array[i].data = data;
cache_array[i].address = address;
cache_array[i].valid = true;

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 7 / 48

jonasskeppstedt.net


Similar for a Store

case ST:
found = false;
address = source2 + constant;
data = source1;
#pragma omp parallel for
for (i = 0; i < 8; i++) {

if (cache_array[i].valid &&
cache_array[i].address == address) {
cache_array[i].data = data;
found = true;
break;

}
}
if (found)

break;

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 8 / 48

jonasskeppstedt.net


Store Continued

i = select_row();
if (cache_array[i].valid)

memory[cache_array[i].address] = cache_array[i].data;
cache_array[i].data = data;
cache_array[i].address = address;
cache_array[i].valid = true;

Next time we want to read or write that variable it is likely that it will
be found in the cache.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 9 / 48

jonasskeppstedt.net


The Loop — isn’t it slow?

No, it doesn’t exist!
It only exists in the software model of the hardware.
Recall: in hardware the loop is run in parallel.
In our case, there are eight so called comparators which compare the
address requested with the address in its row and says ”here!” if the
addresses are equal and the valid bit is true.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 10 / 48

jonasskeppstedt.net


Cache block

The cache on the previous slides only fetches one int from memory at
a miss
It is almost always better to fetch e.g. 8 or 16 ints at a time
The number of bytes to transfer is called the cache block size
As we will see later in the course, if the cache block size is too big,
there is a risk that different threads accidently use the same cache
block and disturb each other
A block is e.g. 32, 64 or 128 bytes and not only one variable.
128 bytes in POWER8

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 11 / 48

jonasskeppstedt.net


Cache coherence protocol states

The caches has a state for each block.
The cache state can for instance be:

SHARED
INVALID
EXCLUSIVE — memory and this cache has a copy but it’s not yet
modified.
MODIFIED — only this cache has a copy and it’s modified

There are similar states for a memory block and also the bit-vector
with info about which cache has a copy.
In addition, a memory block can be in a so called transient state as we
will see

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 12 / 48

jonasskeppstedt.net


Sequential consistency

Sequential consistency (SC) was published by Leslie Lamport in 1979
and is the simplest consistency model.
Lamport is also known for the LATEX macros for TEX
In a later lecture we will look at his loop parallelization method
Neither Java, Pthreads, nor C11/C++ require it. They work on
relaxed memory models.
Sequential consistency can be seen from the programmer as if the
multiprocessor has no cache memories and all memory accesses go to
memory, which serves one memory request at a time.
This means that

program order for each processor is maintained, and
that all memory accesses made by all processors can be thought of as
atomic (i.e. not overlapping).

C11 first intended to use SC but switched to the C++ memory model

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 13 / 48

jonasskeppstedt.net


Definition of SC

Lamport’s definition: A multiprocessor system is sequentially
consistent if the result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.
Consider the program execution by three threads:

int A = B = C = 0;

T1: T2: T3:
A = 1;

if (A)
B = 1;

if (B)
C = A;

Since all memory accesses are atomic, writes are seen in the same
order so T3 must read the value 1 when reading A.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 14 / 48

jonasskeppstedt.net


Dekker’s algorithm

bool flag[2] = { false, false };
int turn = 0;

void work(int i)
{

while (true) {
flag[i] = true;
while (flag[!i]) {

if (turn != i) {
flag[i] = false;
while (turn != i)

;
flag[i] = true;

}
}

/∗ enter cr it ical section ∗/

/∗ . . . ∗/

/∗ leave crit ical section ∗/

turn = !i;
flag[i] = false;

}
}

SC ensures that Dekker’s algorithm works.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 15 / 48

jonasskeppstedt.net


Implementing SC in a system without caches

We will examine the effects of each of the following hardware
optimizations:

write buffer with read bypass
overlapping writes
non-blocking reads

As we will see, none of these can be used even if there are no caches.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 16 / 48

jonasskeppstedt.net


Write buffer with read bypass

Assume a bus-based multiprocessor.
Since there are no caches, the write buffer, a FIFO queue, sits between
the CPU and the bus interface.
With read bypass, it is thus meant that a read skips the queue in the
buffer and goes first to the bus before any write (to a different
address).
In Dekker’s algorithm both CPUs can set their flag[i] to true and
put that write into it’s write buffer.
Then the reading of the other thread’s flag will bypass the write in the
write buffer.
When bypassing the old values of the flag[!i] can be returned (e.g.
if there were other writes before in the buffers) and both can enter the
critical section!

The read bypass destroys the atomicity and hence the sequential order.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 17 / 48

jonasskeppstedt.net


Overlapping writes

In a bus-based system, the FIFO write buffer queue ensures that all
writes from the CPU are ordered.
In a general topology (e.g. nodes in a ”chess board”), however,
different nodes typically are located at different distances and writes
easily can arrive in an order different from the program order.
In the example with variables A, B, and C, the new value of B may
reach T3 before A does which violates SC.

T2 should not be allowed to start its write to b before T3 has
become aware of the write to a.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 18 / 48

jonasskeppstedt.net


Non-blocking reads

Consider the following example.
With speculative execution and non-blocking reads, T2 can read the
value of a before it leaves the while-loop, which violates SC.

int a, f;

// ca l led by T1 // ca l led by T2
void v(void) void w(void)
{ {

a = u(); while (!f)
f = 1; ;

} printf("a = %d\n", a);
}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 19 / 48

jonasskeppstedt.net


Implementing SC in a system with caches

Clearly we should not expect caches to help us making a computer
support SC
Instead, the three issues in systems without caches can violate SC also
with caches.
For example a read cache hit must not be allowed to precede a
previous read miss.
In addition, since there can be multiple copies of a variable, there
must be a mechanism which controls which CPU is allowed to write to
a variable.
This mechanism is called a cache coherence protocol.
A cache coherence protocol has three main tasks, as we will see next.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 20 / 48

jonasskeppstedt.net


Implementing SC with cache coherence protocols

1 At a write, the cache coherence protocol should either remove all
other copies, including the memory copy, or send the newly written
data to update each copy.

A protocol which uses the former technique is called a write invalidate
protocol while the latter is called a write update protocol.
Which is best depends on the sharing behavior of the application but
write invalidate is almost always better.

2 Detecting when a write has completed so that the processor can
perform the next memory access.

3 Maintaining the illusion of atomicity — with memory in multiple
nodes the accesses cannot be atomic but a SC machine must behave
as if they are.

Faster machines without SC also use cache coherence protocols but
some rules are relaxed — and others added

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 21 / 48

jonasskeppstedt.net


Detecting write completion

Consider a write to a memory location which is replicated in some
caches.
How can the writing processor know when it’s safe to proceed?
The write request is sent to the memory where the data is located.
The memory knows which caches have a copy (recall from a previous
lecture this information is stored in a directory, e.g. as a bit vector).
The memory then sends either updates or invalidations to the other
caches.
The receiving caches then must acknowledge they have received the
invalidation message from memory.
The acknowledgement is typically sent to the memory and then when
all acknowledgements have been received, a message is sent to the
writing processor (actually, its cache) to tell it the write has completed.
After that, the processor can proceed.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 22 / 48

jonasskeppstedt.net


Write atomicity 1(2)

There are two different problems:
(1) Write atomicity for a particular memory location, i.e. ensuring all CPUs

see the same sequence of writes to a variable.
(2) Write atomicity and reading the modified value.

For (1) it is sufficient to ensure that writes to the same memory
location are serialized, but not for (2). See next page.
The memory controller can easily enforce serialization.
Assume writes from two different caches are sent to it.
One of them must arrive first. The other can simply be replied to with
a negative acknowledgement of ”try again later!”
When the cache receives that message it will simply try again and
after a while it will be its turn.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 23 / 48

jonasskeppstedt.net


Write atomicity 2(2)

Let us now consider (2): reading the modified value.
A write has completed when all CPUs with a copy have been notified.
However, if one CPU is allowed to read the written value before the
write has completed, SC can be violated.

int A = B = C = 0;

T1: T2: T3:
A = 1;

if (A)
B = 1;

if (B)
C = A;

Assume all variables are cached by all threads, and T2 reads A before
T3 knows about the write.
Then T2 can write to B which might be so close to T3 that T3 can
read A from its cache before the invalidation of A reaches T3.
The solution is to disallow any CPU from reading A before the write is
complete, which can be implemented with a ”try again” reply to the
cache (using a special so called transient state of that address)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 24 / 48

jonasskeppstedt.net


Write atomicity in write update protocols

Recall that in a write update protocol, instead of invalidating other
copies, new values are sent to the caches which replicate the value.
So A is sent to T2 and to T3.
While it’s tempting to read A for T2 it’s not permitted to.
In write update, the updates are done in two phases. First is the data
sent, and all CPUs acknowledge they have received it. Second each
CPU is sent a message that it may read the new data.
There are other problems with write update as well, for instance
updates may be sent to CPUs which no longer are interested in the
variable, thus wasting network traffic.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 25 / 48

jonasskeppstedt.net


Optimizing compilers and explicitly parallel codes

We have now seen the restrictions on hardware so that it does not
reorder memory accesses and thus violate SC.
The same restrictions must be put on optimizing compilers.
The compiler must preserve ”source code order” of all memory
accesses to variables which may be shared — but not the order of
stack accesses or other data known to be private to the thread.
Examples of optimizations which cannot (in general) be used:

Register allocation
Code motion out of loops
Loop reordering
Software pipelining

It’s easy to imagine that these restrictions will slow down SC.
Before C11 the solution for C has often been to compile code for
uniprocessors and use the volatile qualifier for shared data.
Recall that volatile in C is different from volatile in Java!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 26 / 48

jonasskeppstedt.net


Parallelizing compilers

If the compiler is doing the parallelization, these restrictions don’t
apply since the compiler writer hopefully knows what she or he is
doing!
After this course, however, you will probably not have too high hopes
for automatic parallelization, except for some numerical codes.
In my view, parallelization of ”normal” programs needs so drastic
changes to the source code that automatic tools hardly can do that
very well.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 27 / 48

jonasskeppstedt.net


Memory access penalty

The time the processor is stalled due to waiting for the cache is called
the memory access penalty.
Waiting for read cache misses is difficult to avoid in any computer
with caches
Waiting for obtaining exclusive ownership of data at a write access is
one of the disadvantages for SC
How significant it is depends on the application
Of course, once the CPU owns some data, it can modify it’s cached
copy without any further write access penalty, until some other CPU
also wants to access that data, in which case the state becomes
SHARED again.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 28 / 48

jonasskeppstedt.net


Optimizing SC in hardware

Data prefetch can either fetch data in shared or exclusive mode
By prefetching data in exclusive mode, the long delays of waiting for
writes to complete can possibly be reduced or eliminated.
Since exclusive mode prefetching invalidates other copies it can also
increase the cache miss rate.
Somewhat more complex cache coherence protocols can monitor the
sharing behavior and determine that it probably is a good idea to
grant exclusive ownership directly instead of only a shared copy which
is then likely followed by an ownership request.
In superscalar processors it can be beneficial to permit speculative
execution of memory reads. If the value was invalidated, the
speculatively executed instructions (the read and subsequent
instructions) are killed and the read is re-executed.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 29 / 48

jonasskeppstedt.net


Optimizing SC in the compiler

Another approach is to have a memory read instruction which requests
ownership as well.
This can be done easily in optimizing compilers but needs new
instructions (one for each basic data type).
It’s very useful for data which moves from different caches and is first
read and then written:

p->a += 1;
p->b += 1;
p->c += 1;

Here the compiler can very easily determine that it’s smarter to
request ownership while doing the read.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 30 / 48

jonasskeppstedt.net


Summary of sequential consistency

Recall the two requirements of SC:
1 Program order of memory accesses
2 Write atomicity

While SC is ”nice” since it’s easy to think about, it has some serious
drawbacks:

The above two requirements...
...which limit compiler and hardware optimizations, and...
introduce a write access penalty

The write access penalty is due to the processor cannot perform
another memory access before the previous has completed.
This is most notable for writes, since read misses are more difficult to
optimize away by any method
We will next look at relaxed memory consistency models

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 31 / 48

jonasskeppstedt.net


Relaxed memory models

Relaxed memory models do not make programming significantly more
complicated.
You need to follow additional rules about how to synchronize threads.
C11/C++11, Pthreads and Java are specified for relaxed memory
models.
In relaxed memory models, both the program order of memory
references and the write atomicity requirements are removed and are
replaced with different rules.
For compiler writers and computer architects this means that more
optimizations are permitted.
For programmers it means two things:

1 you must protect data with special system recognized synchronization
primitives, e.g. locks, instead of normal variables used as flags.

2 your code will almost certainly become faster, perhaps by between 10
and 20 percent, due to eliminating the write access penalty.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 32 / 48

jonasskeppstedt.net


System recognized locks

Under SC, you normally must protect your data using locks to avoid
data races
However, there are programs in which data races are acceptable
Data races are forbidden in C/C++ and result in undefined behavour.
Under SC you can write your own locks by spinning on a variable
int flag as you wish.
Under relaxed memory models you should use whatever the system
provides.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 33 / 48

jonasskeppstedt.net


Relaxed memory models

Recall that relaxed memory models relax the two constraints of
memory accesses: program order and write atomicity.
There are many different relaxed memory models and we will look only
at a few.
We have the following possibilities of relaxing SC.
Relaxing A to B program order: we permit execution of B before A.

1 write to read program order to different addresses
2 write to write program order to different addresses
3 read to write program order to different addresses
4 read to read program order to different addresses
5 read other CPU’s write early
6 read own write early

Different relaxed memory models permit different subsets of these.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 34 / 48

jonasskeppstedt.net


Assumptions

All writes will eventually be visible to all CPUs.
All writes are serialized which can be done at the memory by letting
one write be handled at a time — other writes must be retried
Uniprocessor data and control dependences are enforced

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 35 / 48

jonasskeppstedt.net


Relaxing the write to read program order constraint

Obviously different addresses are assumed!
A read may be executed before a preceding write has completed.
With it, Dekker’s Algorithm fails, since both can enter the critical
section.
bool flag[2] = { false, false };
int turn = 0;

void work(int i)
{

for (;;) {
flag[i] = true;
while (flag[!i]) {

if (turn != i) {
flag[i] = false;
while (turn != i)

;
flag[i] = true;

}
}

/∗ crit ical section ∗/

turn = !i;
flag[i] = false;

/∗ not crit ical section ∗/
}

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 36 / 48

jonasskeppstedt.net


Some models which permit reordering a (write, read) pair

Processor consistency, James Goodman (Univ. of Wisconsin)
Weak Ordering, Michel Dubois (USC, Los Angeles)
Release Consistency, Kourosh Gharachorloo (Stanford)
IBM 370, IBM Power
Sun TSO, total store ordering
Sun PSO, partial store ordering
Sun RMO relaxed memory order
Intel X86
ARM AArch64

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 37 / 48

jonasskeppstedt.net


Additionally relaxing the write to write program order
constraint

Recall the program below.
int a, f;

// called by T1 // called by T2
void v(void) void w(void)
{ {

a = u(); while (!f)
f = 1; ;

} printf("a = %d\n", a);
}

By relaxing the write to write program order constraint, the write to f
may be executed by T1 even before the function call to u, resulting in
somewhat unexpected output.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 38 / 48

jonasskeppstedt.net


Some models which permit reordering a (write, write) pair

Weak Ordering
Release Consistency
IBM Power
Sun PSO, partial store ordering
Sun RMO relaxed memory order
ARM AArch64

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 39 / 48

jonasskeppstedt.net


Relaxing all memory ordering constraints

The only requirements left is the assumption of uniprocessor data and
control dependences.
Models which impose no reordering constraints for normal shared data
include:

Weak Ordering
Release Consistency
IBM Power
Sun RMO relaxed memory order
ARM AArch64

These consistency models permit very useful compiler and hardware
optimizations and both Java and Pthreads (and other platforms)
require from the programmer to understand and use them properly!
In the preceding example, the two reads by T2 are allowed to be
reordered.
The obvious question then becomes: how can you write a parallel
program with these memory models???

What do you say?
Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 40 / 48

jonasskeppstedt.net


Special machine instructions for synchronization

The short answer is that machines with relaxed memory models have
special machine instructions for synchronization.
Consider a machine with a sync instruction with the following
semantics:

When executed, all memory access instructions issued before the sync
must complete before the sync may complete.
All memory access instructions issued after the sync must wait (i.e. not
execute) until the sync has completed.
Assume both T1 and T2 have cached a.
int a, f;

// called by T1 // called by T2
void v(void) void w(void)
{ {

a = u(); while (!f)
asm("sync"); ;
f = 1; asm("sync");

} printf("a = %d\n", a);
}

With asm we can insert assembler code with gcc and most other
compilers.
The sync instructions are required, as explained next...

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 41 / 48

jonasskeppstedt.net


Sync instruction example 1(3)

int a, f;

// called by T1 // called by T2
void v(void) void w(void)
{ {

a = u(); while (!f)
asm("sync"); ;
f = 1; asm("sync");

} printf("a = %d\n", a);
}

The write by T1 to a results in an invalidation request being sent to
T2 — via memory since T1 is unaware of T2.
At the sync, T1 must wait for an acknowledgement from T2.
When T2 receives the invalidation request, it acknowledges it directly
and then puts it in a queue of incoming invalidations.
When T1 receives the acknowledgement, the write is complete and the
sync can also complete, since there are no other pending memory
accesses issued before the sync.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 42 / 48

jonasskeppstedt.net


Sync instruction example 2(3)
int a, f;

// called by T1 // called by T2
void v(void) void w(void)
{ {

a = u(); while (!f)
asm("sync"); ;
f = 1; asm("sync");

} printf("a = %d\n", a);
}

The write by T1 to f also results in an invalidation request being sent
to T2.
When T2 receives the invalidation request, it acknowledges it directly
and then puts it in the queue of incoming invalidations.
T2 is spinning on f and therefore requests a copy of f.
When that copy arrives, eventually with value one, it must wait at the
sync until the invalidation to a has been applied
Applied means invalidated a in the cache.
Without the sync by T2 its two reads could be reordered:

The compiler could have put a in a register before the while-loop.
The CPU could speculatively have read a from memory.
The incoming transactions may be reordered in a node.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 43 / 48

jonasskeppstedt.net


Sync instruction example 3(3)

Instead of this sync instruction used in order to be concrete, we can
use the Linux kernel memory barrier:

int a, f;

// called by T1 // called by T2
void v(void) void w(void)
{ {

a = u(); while (!f)
smp_mb(); ;
f = 1; smp_mb();

} printf("a = %d\n", a);
}

The memory barrier is a macro which will expand to a suitable
machine instruction.
Now, however, C/C++ and other languages have standardized
support for such operations.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 44 / 48

jonasskeppstedt.net


Weak ordering

The memory consistency model introduced with the sync instruction is
called Weak Ordering, WO, and was invented by Michel Dubois.
The key ideas for why it makes sense are the following:

Shared data structures are modified in critical sections.
Assume N writes to shared memory are needed in the critical section.
In SC the processor must wait for each of the N writes to complete in
sequence.
In WO, the processor can pipeline the writes and only wait at the end
of the critical section.
Sync instructions are then executed as part of both the lock and unlock
calls.

Of course, some or all of the N writes may be to already owned data
in which case there is no write penalty.
Measurements on different machines and applications show different
values but 10-20 % percent of the execution time can be due to writes
in SC.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 45 / 48

jonasskeppstedt.net


Release consistency

Release Consistency, RC, is an extension to WO, and was invented for
the Stanford DASH research project.
Two different synchronization operations are identified.
An acquire at a lock.
A release at an unlock.
An acquire orders all subsequent memory accesses, i.e. no read or
write is allowed to execute before the acquire. Neither the compiler
nor the hardware may move the access to before the acquire, and all
acknowledged invalidations that have arrived before the acquire must
be applied to the cache before the acquire can complete (i.e. leave the
pipeline).
A release orders all previous memory accesses. The processor must wait
for all reads to have been performed (i.e. the write which produced the
value read must have been acknowledged by all CPUs) and all writes
made by itself must be acknowledged before the release can complete.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 46 / 48

jonasskeppstedt.net


WO vs RC

Recall: by A → B we mean B may execute before A

WO relaxation: data → data
RC relaxation:

data → data
data → acquire
release → data
release → acquire

acquire → data: forbidden
data → release: forbidden
In practice not very significant difference on performance.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 47 / 48

jonasskeppstedt.net


Atomic variables in C/C++

With atomic variables in C/C++ we can specify which memory order
we want
There are two forms for the functions:

x = atomic_load_explicit(&a, memory_order_relaxed);
y = atomic_load(&b);

Without _explicit, memory_order_seq_cst is used.
More about this in the next lecture!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 5 2023 48 / 48

jonasskeppstedt.net

