
Lecture 4

Contents of Lecture 4
Four steps in parallelizing a sequential algorithm for Java/C/C++ etc
Multicore architectures

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 1 / 67

jonasskeppstedt.net


The three main issues

Ignore for the moment that memories are slow and caches are useful.
Now the two main issues are:

Program correctness, and
Load-imbalance: some processors might have less work to do and must
wait for others before proceeding.

Unfortunately, memories can be hundreds of times slower than e.g.
adding two integer numbers in a CPU

Problem 1: communication usually creates new cache misses, and
Problem 2: caches in multiprocessors can introduce obscure bugs.

All multiprocessors have some form of caches: optimizing performance
usually means exploiting them better and this is the third main issue.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 2 / 67

jonasskeppstedt.net


Akka

Correctness: use good design without races between messages: nice
Load-balancing: automatic by the Akka system in that a JVM thread
can work for any actor when it has got a message
There is a risk with Akka that data is copied between different cache
memories which takes time
And more overhead to send and receive messages than just writing
and reading variables

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 3 / 67

jonasskeppstedt.net


Programming on a multiprocessor

Global variables and data allocated with new or malloc are shared
Data allocated on the stack is normally private to a thread (but not
enforced by C/C++)
The most convenient way to parallelize a program is to use a good
parallelizing compiler
The second most convenient way is to do it incrementally, one loop
at a time.
OpenMP is a standard for this for C/C++/Fortran:

#pragma omp parallel
for (i = 0; i < n; i += 1)

a[i] = b[i] * c[i];

If it does not work for our program, we parallelize by hand.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 4 / 67

jonasskeppstedt.net


An example: simulating ocean currents 1(2)

For climate modelling of the earth, we can study interactions between
oceans and the atmosphere.
Our example program simulates the motion of water currents in an
ocean.
It was one of the main benchmarks in the 1990’s for research in
multicores
Predicting the state of the ocean at any time requires simulating:

atmospheric effects,
wind,
friction with the ocean floor and walls.

An ocean is represented as a set of cross-sections, like chess boards
put on each other.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 5 / 67

jonasskeppstedt.net


An example: simulating ocean currents 2(2)

The Atlantic is about 2,000 km × 2,000 km.
Using 100 ×100 points in a cross-section gives 20 km between each
point.
We actually want to simulate at a much finer granularity.
Time is represented by steps at which all variables are re-calculated.
Simulating e.g. five years with 8 hours steps requires 5,500 steps.
The computations are enourmous but can be parallelized.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 6 / 67

jonasskeppstedt.net


Terminology

A task is a unit of work that should be performed, and which can be
performed in parallel with other tasks.
A thread is a software entity which runs on a processor and works on
tasks, (one at a time)
A processor (or core) is the real hardware which executes one thread.
With simultaneous multithreading (explained in more detail later)
multiple threads can share a core (up to 8 in POWER8)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 7 / 67

jonasskeppstedt.net


Parallelization of a sequential algorithm

Four main steps in performance programming for a multiprocessor
1 Decomposition — dividing the work into parallel tasks.
2 Assignment — deciding which thread should do which tasks.
3 Orchestration — communication and synchronisation among the

threads.
4 Mapping — deciding which threads should run on which processors.

Decomposition and assignment are called partitioning.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 8 / 67

jonasskeppstedt.net


Decomposition

The number of tasks available at any time limits the amount of
concurrency.
We might want our program to have as many tasks as possible: for
Ocean we can have

one task per set of cross-sections,
one task per cross-section,
one task for a subset of a cross-section, or
one task per grid point.

What is best cannot be stated without knowing more details!
We want our program to have as many tasks as can be
efficiently handled.
Unfortunately, one partitioning may be best for one computer but not
for others!
The goal of performance portability is to have a program which is
fast on most machines but is complicated due to varying cache sizes,
number of CPU’s and how the CPU’s and memories are
interconnected.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 9 / 67

jonasskeppstedt.net


An example related to Ocean 1(3)

Assume a program has two phases.
In phase 1 n × n operations are performed on grid points in parallel.
In phase 2 the sum of values of the n × n points are accumulated.
With p processors phase 1 can be done in time n2/p.
Without considering time for communication and synchronisation,
phase 2 can be done such that each processor adds n2/p values to the
global sum.
What will the speedup be if we consider synchronisation?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 10 / 67

jonasskeppstedt.net


An example related to Ocean 2(3)

Phase 1 can be done in parallel, taking time n2/p.
Since a single variable is incremented n2 times in phase 2, it must be
incremented in a critical region to avoid race conditions. This results
in time n2.
The sequential execution time is 2n2.
The parallelized execution time is n2/p + n2.

The speedup will be 2n2

n2/p+n2 = 2p
1+p < 2.

So, we need to find a better decomposition. See next slide.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 11 / 67

jonasskeppstedt.net


An example related to Ocean 3(3)

Let each processor sum up its n2/p points to a private variable in
phase 2.
Add a phase 3 which adds all theses private variables, taking p time.
New speedup becomes linear in the number of processors, p.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 12 / 67

jonasskeppstedt.net


Assignment of tasks to threads

Balance computation, I/O, data access, and communication.
Easiest if it can be done well statically (at compile-time or just when
the program starts and has read some specific input parameters),
think e.g. of outer loops in matrix multiplication with a fixed amount
of work for each processor.
For other programs, e.g. a parallel chip simulator, it can be difficult to
divide the work. A too sophisticated scheme for load balancing can
also lead to too much run-time overhead.
Run-time assignment is called dynamic assignment.
Partitioning (decomposition and assignment) is an algorithmic step in
the parallelization and is mostly independent of the details of the
machine.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 13 / 67

jonasskeppstedt.net


Orchestration

It is now we write source code.
The programming model (message passing vs shared memory)
determines how to do this.
Questions in orchestration include:

How to organize data structures to reduce cache misses?
How to reduce the cost of communication and synchronisation?
How to reduce serialisation of access to shared data?
How to schedule tasks to satisfy dependences early?

Orchestration is essentially equivalent to making an organization
efficient (except that computers are machines without feelings...)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 14 / 67

jonasskeppstedt.net


Mapping

Mapping is done in cooperation with the operating system at run-time.
Mapping specifies which thread should run on which processor.
Sometimes the programmer can specify on which processor a thread
should run, called to pin it.
Pinning can be important for large multiprocessor with a non-trivial
topology (topology = how the CPUs are connected together).
It may very well be useful to have more threads than processors.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 15 / 67

jonasskeppstedt.net


Owner computes

So far we have parallelized a program with respect to computation.
Sometimes it is better to parallelize it with respect to data (or both).
The basic rule then is owner computes (and modifies) and other
threads read the data.
In Ocean, it is natural to use the owner computes rule.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 16 / 67

jonasskeppstedt.net


Multicore architectures

Multicore architectures
SIMD architectures
Vector architectures
Distributed memory architectures
Shared memory architectures
Multithreaded architectures
Dataflow architectures
Systolic arrays
Cache-only memory architectures

Why is it important to study computer history?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 17 / 67

jonasskeppstedt.net


Why is important to study computer history?

You will notice that most of the fancy designs have been tried already
You will understand why some designs survive and others die
You will not be impressed when somebody presents the new
breakthrough which will change everything and make parallel
computing easy
You will understand where today’s machines come from which is
important to help you to predict which architectures will be around in
10 or 20 years...

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 18 / 67

jonasskeppstedt.net


Technology in computer generations

1 -1954, vacuum tubes and relay memories
2 1955-1964, discrete transistors and core memories
3 1965-1974, integrated circuits, pipelining, cache memories
4 1975-1990, DRAM memory, vector and multiprocessors
5 1991-present scalable architectures

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 19 / 67

jonasskeppstedt.net


Zuse Z3 1(3)

Konrad Zuse was born in 1910 and became a civil engineer
He found it boring and started at Henschel to design aircrafts
He also found the many calculations made by hand boring and started
to dream about a machine that could do them for him
He wanted to automate his calculations and filed a patent for the
computer in 1936, and then started to build several machines...Z3:

number representation binary floating point with NaN and ∞
Turing complete yes, shown 1998
clock frequency 5.3 Hz
average add delay 0.8 s
average multiplication delay 3 s
memory size 64 words of 22 bits
power consumption 4 kW
weight 1,000 kg
in operation 1941 - 1943 (when it was bombed)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 20 / 67

jonasskeppstedt.net


Zuse Z3 2(3)

After the war, in 1946, Zuse sold patents to IBM to fund his computer
company Zuse KG which built a replica of Z3 now at Deutsche
Museum in München, where also original machines by Pascal and
Leibniz and others can be seen. Very inspiring museum of engineering
dreams, successes and failures.
According to Zuse, IBM didn’t understand the coming computer
revolution then but wanted his patents for other things.
His company produced approximately 250 computers (which was a
good number as we will see below)
Siemens bought Zuse KG in 1968.
When the Computer Science and Engineering program (i.e. D-Linjen),
started in 1982, celebrated its 101 anniversay in 1987, Konrad Zuse
accepted an invitation by Professor Lars Philipson to give a speech
here but unfortunately he could not come. He died 1995.
So, the inventor of the computer wanted to talk to the engineering
students at LTH!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 21 / 67

jonasskeppstedt.net


Zuse Z3 3(3)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 22 / 67

jonasskeppstedt.net


ENIAC

A machine built from 1943 to 1945 at University of Pennsylvania
Practical use in December 1945
Used to calculate tables for artillery
Designers Eckert and Mauchly left to found the EMCC company —
see below

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 23 / 67

jonasskeppstedt.net


The Princeton IAS machine

The Princeton IAS machine was built from 1942 to 1951 and became
fully operational in 1952.
The chief designer was John von Neumann.
It used two’s complement to represent negative numbers.
Both instructions and data were stored in memory, so loops could be
implemented by modifying the conditional branch instruction...
An addition took 62 µs

Many machines were built as derivates from this.
The founder of the Department of Computer Science, Carl Erik
Fröberg, was sent by Vetenskapsakademien 1947-1948 to the U.S. to
study the development of electronic computers, and built the SMIL
computer in Lund (Sweden’s second after BESK).

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 24 / 67

jonasskeppstedt.net


Commercial computers

The first commercial computer was in a sense a multicore machine:
the BINAC.
It had two bit serial CPUs each with a 512 word memory, and was
built by the Eckert-Mauchly Computer Corporation in 1949.
It’s not regarded as a multicore machine, however. The first multicore
was delivered by Burroughs to the US defense only 13 years later, in
1962.
Compared with the Z3, it was very much faster.
It could compute for over 31 hours without any error at EMCC.
Then they disassembled and packaged it for delivery to the Northrop
Aircraft Company.
The customer was so concerned about security that no employee from
EMCC was allowed to come and assemble it...

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 25 / 67

jonasskeppstedt.net


BINAC

Unfortunately it never worked properly after delivery to the Northrop
Aircraft Company.
EMCC and Northrop blamed each other...
If you buy the world’s first commercial computer it might have been a
good idea to let the seller assemble it!
EMCC is now called Unisys and has about 20,000 employees.
A few months later a mathematician at ETH in Zürich visited Zuse
and asked him to program his new Z4 to solve a differential equation
which he did on the spot and then ETH bought it. The Z4 was the
only commercial computer in Europe during 1950 and 1951.
Zuse invented the programming language Plankalkül for it.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 26 / 67

jonasskeppstedt.net


IBM

IBM machines were called electronic calculators and were programmed
by manually plugging wires.
Cuthbert Hurd instead wanted to store the program in memory (as in
the von Neumann architecture) and convinced the new IBM president
to make a commercial machine that also could be programmed using
punch cards for that purpose.
He hired the first team of programmers, including John Backus and
Fred Brooks, as well as and John von Neumann as a consultant.
This started the amazing story of IBM computers.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 27 / 67

jonasskeppstedt.net


IBM 701

The IBM 701 was IBM’s first commercial scientific computer.
Introduced on April 29 1952.
Memory consisted of 2048 36-bit words.
Two registers accessible to programmers.
19 systems were installed.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 28 / 67

jonasskeppstedt.net


IBM 704

The IBM 704 was introduced 1955.
Chief architect was Gene Amdahl (who built a computer as PhD thesis
in 1952).
It was the world’s first mass produced computer (i.e. more than 100
machines) with floating point hardware.
It had 5 programmer accessible registers.
123 systems were sold until 1960.
Both LISP and FORTRAN were created on the IBM 704.
40,000 instructions per second could be executed.
Floating point performance was 5 kFLOPS.
Software was incompatible with IBM 701.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 29 / 67

jonasskeppstedt.net


Amdahl

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 30 / 67

jonasskeppstedt.net


IBM 709 and IBM 7090

IBM researchers John Cocke and Daniel Slotnick writes a memo
discussing parallel computing. Slotnick proposed SIMD processing.
The IBM 709 was introduced 1958 as an improvement over IBM 704.
Again, software was incompatible with the previous machine.
An emulator was provided which could run IBM 704 software.
On the IBM 704, I/O was done from the CPU but the IBM 709
improved I/O by introducing separate processors called I/O channels
for this.
The IBM 7090 was introduced 1959 and was similar in design as the
IBM 709 but was implemented with transistors instead of vacuum
tubes.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 31 / 67

jonasskeppstedt.net


IBM 360 — the first computer architecture

One of the main annoyances with previous machines was that every
new machine required new software.
The IBM 360 was instead an architecture, introduced in 1964.
IBM wanted to sell ”inexpensive” slow machines and scale the
performance and price but they should be compatible for software.
The price was initially set based on the performance.
Later machines include the IBM 370 series, and the IBM 3090.
A recent compatible machine, Z14, was announced 2017 and has 10
core processors clocked at 5.2 GHz and can have up to 10 TB of
RAM memory (for Z13 — I could not find the max memory for Z14).

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 32 / 67

jonasskeppstedt.net


More about the IBM 360

Introduced the 8-bit byte.
It had 32-bit words.
It was byte addressable.
16 general purpose registers.
24-bit addresses.
First TLB was in IBM 360/Model 67 (and GE 645)
First data cache was in IBM 360/Model 85
Tomasulo’s algorithm for out-of-order execution was first used in IBM
360/Model 91

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 33 / 67

jonasskeppstedt.net


IBM Stretch

IBM 7030, or IBM Stretch, was the fastest machine from 1961-1964.
The design goal was to be 100 times faster than the previous machine!
It was neither technically nor commercially successful but important
technologies were developed for it, including:

Instruction pipelining: also available to some extent in both of Z1 and
Z3, and Illiac IV.
The pipeline stage names fetch, decode, execute come from Stretch
Memory interleaving

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 34 / 67

jonasskeppstedt.net


Control Data Corporation

Control Data Corporation, founded 1958, was a small competitor with
IBM during early 1960’s.
One of their engineers, Seymour Cray, set in 1960 out to build the
CDC 6600, a machine which should be 50 times faster than their
previous, CDC 1604 (a machine similar to the IBM 7090).
After four years of development, the management was quite worried
about what was happening...
Cray’s response was that he wanted his own lab in his home town,
near Minneapolis, and nobody was allowed to go there except by
invitation — otherwise he would quit.
The CDC’s president accepted his demand and Cray with some
engineers moved to the new lab.
He chose the location so that it was too distant for a one-day visit by
car.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 35 / 67

jonasskeppstedt.net


Supercomputing

In 1964 the CDC 6600 was released and Control Data Corporation
then dominated the supercomputer industry during the 1960’s.
The CDC 6600 became the fastest computer in the world and started
the supercomputing era.
The CDC 6600 is regarded as the first superscalar computer —
execution was controlled by a scoreboard.
Now the IBM president asked approximately:
How is it that this tiny company of 34 people including the
janitor can be beating us when we have thousands of people?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 36 / 67

jonasskeppstedt.net


Cray’s reply

You just answered your own question.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 37 / 67

jonasskeppstedt.net


The IBM response

IBM’s response was to also set up a remote lab of 200 engineers, to
build an even faster machine.
It was intended to be able to issue seven instructions per clock cycle.
It turned out to be impossible to achieve the desired performance levels
if binary compatibility with the 360 architecture was to be maintained.
The project was cancelled in 1969.
It is extremely important to have a good instruction set architecture,
because all future CPUs and optimizing compilers will have to live
with it.
This cannot be overstated. Compare X86 and Itanium, and AMD’s
X86_64

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 38 / 67

jonasskeppstedt.net


Vector supercomputers

Daniel Slotnick (who wrote the memo at IBM about parallel
computing with John Cocke) had moved to the company
Westinghouse where he designed a parallel machine called Solomon.
Solomon was intended to have one CPU called the control unit and
256 processing units with their own memories
The control unit specified the instruction that all processing units
should perform, i.e. it’s a SIMD vector machine.
The Solomon machine was built with funding from the US Air Force
but they withdrew from the project in 1964, and it was cancelled.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 39 / 67

jonasskeppstedt.net


ILLIAC IV

When Solomon was cancelled, Slotnick convinced Burroughs and the
University of Illinois to build a similar machine, the ILLIAC IV.
It was built from 1965 - 1975.
It was intended to reach 1 GFLOPS using 256 SIMD units clocked at
13 MHz, but a smaller machine could only be built which reached 200
MFLOPS.
As Solomon, it relied on the application to be suitable for SIMD
processing. The ILLIAC IV was the fastest machine from 1975 until
1981 for suitable applications.
A lot of research on optimizing compilers was done at the University
of Illinois.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 40 / 67

jonasskeppstedt.net


Additional machines at CDC and Cray’s departure

The next machine from Control Data Corporation, the CDC 7600, was
about five times faster than the CDC 6600
These machines were very expensive but fastest in the world and good
investments for some customers
Development costs of each of 6600 and 7600 almost bankrupted CDC.
The next CDC machine, CDC 8600, was too complex and Cray told
the president they had to redesign it from scratch... :-(
In the meantime CDC was working on another, less complex machine.
The president, Norris, didn’t want to prioritize Cray’s redesign.
He left to fund Cray Research in 1972.
Norris invested USD 300,000 in Cray’s startup.
The new CDC machine was not a success due to it relied too much on
fast parallel parts but was slow at sequential parts — Amdahl’s Law!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 41 / 67

jonasskeppstedt.net


Cray Research

First a word from a CTO of HP, Joel Birnbaum:
”It seems impossible to exaggerate the effect he had on the
industry; many of the things that high performance computers
now do routinely were at the farthest edge of credibility when
Seymour envisioned them.”
If it was too expensive to develop the next machine at CDC, what
could he do with his startup???
It turned out that Seymour Cray was well known and respected at
Wall Street and they got all funding they needed.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 42 / 67

jonasskeppstedt.net


The Cray-1

In 1975 the Cray-1 was announced with a clock rate of 80 MHz — it
was very fast both for scalar and vector parts of an application.
Vector machines before (and sometimes after) the Cray-1 were
keeping the vectors in memory, this allows flexible vector sizes.
Cray instead used vector registers of fixed sizes.
Due to the fact that vectors often were used several times this
increased performance.
After the announcement of their machine, there was an auction for
who would get the first Cray-1.
Seymour Cray was not impressed by the ideas behind ILLIAC IV: he
said ”If you were plowing a field, which would you rather use?
Two strong oxen or 1024 chickens?”
Many years later, high performance microprocessors changed that, of
course.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 43 / 67

jonasskeppstedt.net


Cray-1

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 44 / 67

jonasskeppstedt.net


The first real multicore was released in 1962

Stepping back to 1962, Burroughs released the Burroughs D825.
This is the first multicore machine. It was called a multiprocessor.
It had up to four CPUs and 16 memory modules.
It was symmetric in that all CPUs could access any memory module.
It’s operating system had a shared ready queue of tasks.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 45 / 67

jonasskeppstedt.net


Multics operating system

AT&T, General Electric and MIT set out to build the Multics
operating system in 1965.
It was intended to run on multiprocessors.
In 1969 it ran (to some extent) on an 8 CPU multiprocessor built by
Honeywell.
It was a failure but out of it came UNIX and later Mac OS X and
Linux.
The same year Dijkstra formulated the critical regions problem.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 46 / 67

jonasskeppstedt.net


Summary so far

What have we got so far?
Software is FORTRAN
Optimizing compilers which can parallelize and vectorize numerical
codes are being developed, they are very good at vectorization but less
at parallelization (and still are).
By the end of 1970’s and beginning 1980’s supercomputers with few
CPU plus vector instructions are the fastest machines, either from
Japanese companies or Cray.
A typical multiprocessor was bus-based.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 47 / 67

jonasskeppstedt.net


CISC processors

Before the 1960’s hardware was more expensive than software.
There was a software crisis in the 1960’s when it was realized that
software was becoming the expensive part.
Most of the computer industry went in the direction of creating CPUs
which they thought would help programming in high-level languages.
For instance instructions to set up a stack frame and save registers
and later restore registers were common, e.g. in the VAX.
Instructions to copy memory were taken for granted. With virtual
memory and page faults such instructions are tough to implement
efficiently.
The VAX even had an instruction to evaluate a polynomial.
Fancy instructions were ”selling features”

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 48 / 67

jonasskeppstedt.net


IBM 801

After finishing his PhD in mathematics, John Cocke worked for IBM
from 1956 to 1992.
In 1979 John Cocke designed a new processor which went completely
against the mainstream of more complex instruction sets.
This was the foundation for the RISC revolution — all your mobile
phones use it and some of the fastest computers.
RISC = reduced instruction set computer (reduced as in simpler, not
fewer)
The commercialization of superscalar RISC was in the POWER
architecture.
POWER = performance optimization with enhanced RISC

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 49 / 67

jonasskeppstedt.net


POWER, ARM, MIPS, RISC-V

ARM is similar to POWER and the ARM business model is to sell
designs and licenses — not physical chips
MIPS was developed at Stanford and went open source in yearly 2019
RISC-V is an open source architecture introduced 2010 and competes
with ARM and MIPS
RISC acronym comes from UC Berkeley
Since a few years Google, Samsung, IBM, Canonical (Ubuntu) and
many others are collaborating on POWER — see
openpowerfoundation.org.
In August 2019 IBM made POWER open source in the sence that
there are no license fees to use it
Strike against both ARM and RISC-V (and possibly MIPS)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 50 / 67

jonasskeppstedt.net


Many new parallel computing principles

With increased transistor budgets many new ideas could be realized.
Today we know which one won the battle: shared memory
multiprocessors with coherent caches, i.e. essentially the Burroughs
D825 but with added cache memories.
It’s relatively easy to invent new faster parallel machines, if you can
ignore the constraint of having happy paying commercial customers to
make your company survive (by instead letting the US Department of
Defence pay).
Many niche market machines were developed by companies which
spent huge amounts of money before cancelling their projects.
Typical killing features for hardware companies include

insufficient performance
requiring new programming languages
requiring nonstandard extensions to C or FORTRAN
taking too long to reach market so your technology becomes obsolete

New programming languages are of course not bad but need time to
have impact which companies often cannot afford.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 51 / 67

jonasskeppstedt.net


Examples of parallel architectures

MPP (massively parallel machines)
Dataflow machines are developed at MIT by Jack Dennis and Arvind
Systolic arrays are described by H.T. Kung and Charles Leiserson
The C.mmp multiprocessor consisting of 16 PDP-11 connected by a
crossbar to a shared memory was built at CMU.
The multithreaded machine Denelcor HEP developed by Burton Smith
Stanford DASH
KSR-1 and DDM

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 52 / 67

jonasskeppstedt.net


MPP machines

By Massively Parallel Machines are meant distributed memory
machines where each node has a CPU and a private memory.
The number of such nodes are typically hundreds or thousands.
To communicate, programmers (or optimizing compilers) must create
messages to send to some other node.
MPI (message passing interface) is an industry standard for high
performance computing and is actively used today as well.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 53 / 67

jonasskeppstedt.net


Thinking Machines, Inc

It was founded 1983 and they made some of the coolest machines in
the 1980’s.
Famous persons like Guy Steele worked for them (who coauthered the
Java Language Specification among many other things).
The first connection machine, the CM-1, consisted of up to 65,536
one-bit processors, each with 4 KB RAM.
To improve performance, the CM-2, used normal floating point
processors (Weitek), and the last model, the CM-5, used normal
SPARC processors from Sun.
Sun later bought the company.
They were programmed in FORTRAN, as well as a parallel version of
Lisp, called *Lisp (star Lisp).

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 54 / 67

jonasskeppstedt.net


The CM-5

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 55 / 67

jonasskeppstedt.net


Dataflow machines

Dataflow machines have a completely different hardware architecture
than anything you are used to.
Instead of a program counter which addresses the next instruction to
execute, a dataflow program is a dataflow graph.
The dataflow graph is worked on in parallel. An operation is called a
token and as soon as an operation’s operands have been computed
that operation can be computed by a processor, and the result then
stored back to a memory in a special way (see below).
The memory is called a token store.
In a normal computer the data is stored in memory and an instruction
accesses that memory location.
In a dataflow machine, the data is stored in the instruction!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 56 / 67

jonasskeppstedt.net


More about dataflow architectures

When an operation has been computed, and the result should be
stored in memory, the result is stored in each instruction which needs
the data as an operand.
Instead of shared memory and a program counter, a token matching
mechanism is needed to propagate data to the instructions (tokens).
The main architecture and machine designer at MIT has been Arvind,
who built the Monsoon Dataflow machine together with Motorola, but
it was never a commercial machine.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 57 / 67

jonasskeppstedt.net


Systolic arrays

The name systolic arrays was coined by H.T. Kung and Charles
Leiserson (one of the authors of Introduction to Algorithms) who
wrote the first paper on this architecture.
By systolic is meant computing at a certain pace, like heart beats.
The idea is to put processors in an array and let a processor get data
from its left neighbour and produce data to its right neighbour.
Alternatively input comes from two sources and are written to two
destinations.
The key idea then is to have very efficient communication since the
data is just copied from one processor to the next.
The potential performance is huge.
The main problem is to map algorithms to this architecture.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 58 / 67

jonasskeppstedt.net


Systolic array idea

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 59 / 67

jonasskeppstedt.net


A somewhat earlier systolic array from 1944

The British Collosus code breaking machines also used the idea of
systolic arrays. 10 such machines were used until the end of WWII.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 60 / 67

jonasskeppstedt.net


The iWarp machine

CMU and Intel set out to explore the possibilites of building a parallel
supercomputer based on the CMU Warp systolic array machine.
An iWarp machine had 64 compute cells each of which was a 32-bit
processor.
They were produced around 1990 and in 1992 Intel created a
supercomputing division (now no longer existing).
One result from the systolic array project at CMU is the software
pipelining algorithm called modulo scheduling which is now widely
used in optimizing compilers also for normal CPUs.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 61 / 67

jonasskeppstedt.net


Multithreaded architectures

To avoid the problem of long latency operations, instead of waiting an
alternative is to switch thread to execute.
Obviously this must be done in hardware.
There are many different ways to design such multithreaded machines.
Some switch threads every clock cycle, others when there is a long
latency operation such as a cache miss.
After designing the HEP machine for Danelcor, Burton Smith designed
the Tera machine in his own company.
The Tera parallel machine had no caches but some interesting ideas,
e.g. with each memory word was a full or empty bit that could be used
for synchronization. Writing a word set the bit and reading a word
cleared it.
They had very few commercial customers.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 62 / 67

jonasskeppstedt.net


Cache coherent shared memory multiprocessors

From the few samples we have seen, there are many ways to build
parallel computers.
In the 1980’s multiprocessors with cache memories were becoming
commercial products.
The main question was how to make them scalable to a large number
of CPUs.
A single bus is of course out of the question.
A mesh is one acceptable topology and was used in the Stanford
DASH machine.
We will look at the details in a later lecture, but consider a
multiprocessor with caches where a memory word may be copied to
any number of caches.
Sometimes we need to tell every node with a copy to forget about its
copy — and fetch a new value from memory next time.
How should this information be organized?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 63 / 67

jonasskeppstedt.net


A directory

A so called directory at the memory in a node keeps track of which
nodes have a copy.
Note that a directory can become large if there are many nodes and
we allow any number of copies.
An alternative is to have a fixed maximum number of copies stored in
the directory and move the directory information for a certain memory
block to the operating system kernel.
So each memory address has a home location i.e. a node in whose
memory it is located.
The home location, or node, is typically static.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 64 / 67

jonasskeppstedt.net


COMA

Cache-Only Memory Architectures, COMA.
Consider two threads in different nodes accessing the same data in a
third node.
If both threads read and write the data, the home node of the data
will be involved.
The latency is increased by having to go to that home node for telling
the other thread (i.e. cache) to write it’s modified copy back to
memory.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 65 / 67

jonasskeppstedt.net


Two machines: KSR-1 and DDM

Researchers at SICS (Swedish Institute of Computer Science) as well
as a company called Kendall Square Research (close to MIT) invented
a different design.
Instead of having a static home location, data can ”diffuse” to a
suitable node that is currently using it and let that be the new home.
That way only two nodes need to be involved in the above scenario.
The Swedish machine was called the Data Diffusion Machine.
For some applications this is useful while for others it is not very
important.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 66 / 67

jonasskeppstedt.net


Summary: the most important lessons from the past

With the difficulty of increasing the clock rate chip companies want us
to use multicores everywhere
Programmability and mass market are essential
Amdahl’s Law is extremely important
Cache coherent shared memory multiprocessors are here now and we
must write general purpose applications in Java and C/C++ for them.
It is essential to understand that all the fancy ideas have been around
many decades and we should be sceptical when somebody tells us they
have the ultimate solution for faster parallel machines...
GPU’s are SIMD with multiple threads and work very well for some
application types

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 4 2023 67 / 67

jonasskeppstedt.net

