
Contents of Lecture 3

Threads in Java
Synchronized methods and blocks
Lock and Trylock in Java
volatile in Java vs in C
Pthreads

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 1 / 52

jonasskeppstedt.net

Creating Java Threads

Either extend the Thread class or implement the Runnable interface.
Your thread needs a public void run() method.
Don’t call run — you should instead call start.
If main calls run, main has to do the work itself...
To wait for a thread to terminate, you use join in a try-catch block.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 2 / 52

jonasskeppstedt.net

The Work class

class Work extends Thread {

Node excess; // nodes with excess preflow
Node s; // source node
Node t; // sink node

public void run()
{

while (excess != null) {
}

}
}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 3 / 52

jonasskeppstedt.net

An incomplete preflow function

int preflow(int s, int t, int nthread)
{

work = new Work[nthread];
for (i = 0; i < nthread; ++i)

work[i] = new Work(node[s], node[t]);

for (i = 0; i < nthread; ++i)
work[i].start();

for (i = 0; i < nthread; ++i) {
try {

work[i].join();
} catch (Exception e) {

System.out.println("" + e);
}

}
}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 4 / 52

jonasskeppstedt.net

Java synchronization

A program which uses synchronization properly to avoid data races is
said to be thread safe.
Every Java object has a lock. Before entering a method declared
synchronized, the JVM checks if the calling thread is the owner of
the lock.
If no thread owned the lock the calling thread becomes the owner at
once.
If the lock is owned by another thread, the calling thread is blocked
and is put into an entry set for the object.
When the lock is released, some thread in the entry set is resumed and
becomes the new lock owner.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 5 / 52

jonasskeppstedt.net

Synchronized blocks

Not only methods can be synchronized.

void push(Node u, Node v, Edge e)
{

synchronized (u) {
}

}

The behaviour is the same, that the object’s lock is attempted to be
taken

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 6 / 52

jonasskeppstedt.net

Locking a useless object

Suppose a thread succeeds in taking an object but finds it useless
For instance a queue which is empty
We would then like to wait for another thread to ”fix” the object —
such as putting something in the queue
As it is, we have the lock and nobody can fix it
We want to unlock and wait for the fix
And be told when when we should check it out again
A Java object has a condition variable for this

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 7 / 52

jonasskeppstedt.net

The Java Object Wait-Set

There are two methods wait() and notify() for this
In addition to the entry set there is also a wait set.
Calling wait() releases the lock, blocks the thread, and puts it into
the wait set.
The purpose is to let some other thread fix the object so it becomes
usable for the thread which calls wait().
Calling notify() wakes up one thread in the wait set if there was any
there, puts it it into the entry set and sets its thread state to Runnable.
Calling notify() does not release the lock.
One can also call notifyAll() which wakes up all threads in the wait
set.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 8 / 52

jonasskeppstedt.net

More Details

The Java object lock is a so called recursive lock which means that
we can call other synchronized methods for the same object without
being blocked by ourselves.
A thread may own multiple object locks (i.e., call synchronized
methods for different objects).
A notification for an object with an empty wait set has no effect.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 9 / 52

jonasskeppstedt.net

Using wait()

A thread waiting in the wait set can be interrupted, ie another thread
can call its interrupt() method. This results in the
InterruptedException being thrown:

try {
wait();

}
catch (InterruptedException ie) { /* ignore */ }

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 10 / 52

jonasskeppstedt.net

ReentrantLock

Sometimes it is more convenient to use an explicit lock and not the
”implicit” / ”internal” lock that is used with synchronized

import java.util.concurrent.locks.ReentrantLock;

ReentrantLock x = new ReentrantLock();

x.lock();
x.unlock();
if (x.tryLock()) {

x.unlock();
}

If we cannot see a simple lock-order rule we can sometimes use tryLock
Say you want to take some locks in a random order. Try one at a time
and restart with the first if any fails.
Can you see a simple rule to avoid deadlocks and tryLock for Lab 2?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 11 / 52

jonasskeppstedt.net

volatile in Java

The definition of volatile has changed since it was introduced.
Initially, the accessing of a particular volatile attribute of an object was
serialized, i.e., all threads saw these accesses in the same order.
These accesses were, however, unrelated to accesses of other variables.
If you updated some variables and then set a volatile flag to indicate
you were done, your program was buggy since the accesses were not
ordered, i.e., the updates may be seen after the new value of the flag!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 12 / 52

jonasskeppstedt.net

volatile in Java

Now volatile is more similar to synchronized

When entering a synchronized block, or reading a volatile attribute,
everything in the cache is conceptually made invalid.
It is not in reality but think of it as all variables must be fetched from
memory with their most recent values that have previously been
written to memory.
When leaving a synchronized block or writing a volatile attribute
everything in the cache is, again conceptually, written to memory.
The same concept applies to locks in Java (and C/C++):

Taking a lock fetches every new variable from memory
Unlocking it writes everything back to memory

In addition, unlocking must wait for OK from memory that every
thread knows about the writes
Note that this is only conceptual otherwise extremely slow

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 13 / 52

jonasskeppstedt.net

volatile in C

volatile in C tells the compiler that accesses to this variable should
never be optimized in any way
It is not at all used for multithreading
Normal variables can be allocated a register in the CPU but never
volatile variables

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 14 / 52

jonasskeppstedt.net

Introducing Pthreads

POSIX stands for Portable Operating System Interface and is an API
for UNIX programmers
Pthreads, or POSIX Threads, is available on all UNIX machines,
including Linux and MacOS X
Pthreads are quite similar to Java threads
They are enabled by:

#include <pthread.h> in the C source file
compiling with: gcc file.c -pthread
or: clang file.c -pthread

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 15 / 52

jonasskeppstedt.net

Getting started

#include <pthread.h>

pthread_t is the type of a thread
Create threads using pthread_create()

Wait for a thread using pthread_join()

Terminate a thread using pthread_exit()

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 16 / 52

jonasskeppstedt.net

pthread_create() 1(2)

int pthread_create(
pthread_t* thread, // output .
const pthread_attr_t* attr, // input .
void* (*work)(void*), // input .
void* arg); // input .

pthread_t thread;
int status;
struct { int a, b, c } arg = { 1, 2, 3 };

status = pthread_create(&thread, NULL, work, &arg);

The thread identifier is filled in by the call and attributes are optional
The created thread runs the work function and then terminates
A class is called a struct in C — no methods and everything public
Typically multiple arguments are passed in a struct as above

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 17 / 52

jonasskeppstedt.net

pthread_create() 2(2)

int pthread_create(
pthread_t* thread, // output .
const pthread_attr_t* attr, // input .
void* (*work)(void*), // input .
void* arg); // input .

A zero return value from pthread_create() indicates success, and a
nonzero describes an error printable with perror.
void* is a void pointer and is similar to Java’s Object
So the work function can return any data.
Calling pthread_join waits for the termination of another thread and
also gives access to the returned void pointer.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 18 / 52

jonasskeppstedt.net

pthread_join()

int pthread_join(
pthread_t thread, // input .
void** result); // output .

The call causes the caller to wait for the termination of a thread.
If non-NULL, the terminated thread’s return value is stored in result.
A thread can only be joined by one thread.
In Lab 2 you don’t need to return any value from a thread and can
just use:

pthread_t thread[t];
for (i = 0; i < t; i += 1)

if (pthread_create(&thread[i], NULL, work, arg) != 0)
error("pthread_create failed");

for (i = 0; i < t; i += 1)
if (pthread_join(thread[i], NULL) != 0)

error("pthread_join failed");

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 19 / 52

jonasskeppstedt.net

pthread_exit()

void pthread_exit(void*); // return value from work.

Either use this or a return from the work function to terminate a
thread.
At termination of the main thread using exit or return, all other
threads are killed.
After a thread has terminated, the Pthreads system waits until some
other thread joins with it. Then the terminated thread’s resources are
recycled.
If a thread will never be joined, it should have been detached so that
the system can recycle resources.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 20 / 52

jonasskeppstedt.net

pthread_detach()

void pthread_detach(pthread_t thread); // recycle at exit.

A thread can be detached from the beginning by specifying an
attribute saying so at pthread_create.
Or, any thread can call pthread_detach.
A detached thread cannot be joined.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 21 / 52

jonasskeppstedt.net

Terminating a Thread

There are three ways to terminate a thread:

1 Return from the work function.
2 The thread can call the function

void pthread_exit(void* value). The Standard C Library
function void exit(int status) should normally not be used since
it terminates the entire program.

3 Calling the function int pthread_cancel(pthread_t thread)
makes a request to terminate the specified thread. See cancellation
below.

The first two are used by the thread itself and the third is used to stop
another thread.
Stopping another thread can be useful e.g. when a user has hit a
”Cancel” button or another thread already has found a winning chess
move.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 22 / 52

jonasskeppstedt.net

Thread Cancellation Overview

Simply terminating a thread can be disastrous if for example it has
locked a mutex and is modifying shared data.
Therefore the pthread_cancel simply requests that the thread
should terminate. To actually know that the thread has terminated, it
must be joined with.
A thread that received a cancellation request is informed about this
fact at certain points in the program, called cancellation points.
The termination of the thread is started when it comes to such a
cancellation point, if it has a pending cancellation request.
A thread can install a function that is executed before the thread
actually terminates.
It is possible to allow cancellation at any time — see below.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 23 / 52

jonasskeppstedt.net

Cancellation State and Type

For cancellation, a thread has two variables, each with two possible
values.
The variables cannot be accessed directly but only through function
calls.
They are:

State — cancellation is either enabled or disabled.
Type — cancellation is either asynchronous or deferred.

These result in three different cancellation modes:
1 Disabled — any cancellation request received is saved until

cancellation is enabled in the future.
2 Deferred — cancellation is started at a cancellation point if there is a

pending cancellation request.
3 Asynchronous — cancellation can start at any time.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 24 / 52

jonasskeppstedt.net

Modifying the Cancellation Mode

The functions to modify the cancellation mode returns the thread’s
old value of the respective variable.
int pthread_setcancelstate(int state, int* old);
The state must be one of:

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

int pthread_setcanceltype(int type, int* old); The type
must be one of:

PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_ASYNCHRONOUS

The default mode for new threads is deferred.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 25 / 52

jonasskeppstedt.net

Cancellation Points

A number of functions are cancellation points, including

pthread_cond_wait pthread_cond_timedwait
pthread_testcancel pthread_join
close creat
open read
system wait
waitpid write

POSIX guarantees that the above (and some others) are cancellation
points.
Another list contains possible cancellation points, including

printf scanf
fopen fclose

ISO C and POSIX functions not on any of those lists are guaranteed
not to be cancellation points.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 26 / 52

jonasskeppstedt.net

Receiving a Cancellation Request

Thus if a cancellation request is received while cancellation is disabled,
the request is simply blocked until it is enabled again.
A pending request is delivered when the thread comes to a function
which is a cancellation point.
Changing the cancellation mode is not a cancellation point.
At a cancellation point the thread first executes any installed cleanup
handler (see below) and then terminates the thread.
The return value from a cancelled thread is PTHREAD_CANCELED which
thus is a valid value of a void pointer.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 27 / 52

jonasskeppstedt.net

Installing Cleanup Handlers

Each thread has a stack of cleanup handlers.
They are installed with the function:
void pthread_cleanup_push(void (*func)(void*), void* arg);

The argument arg will be passed to func when it is executed.
To remove a cleanup handler, use the function:
void pthread_cleanup_pop(int execute);

If the argument execute is nonzero, the cleanup handler will first be
executed and then popped.
When a thread is about to be terminated, all cleanup handlers on the
stack are executed, starting with what is on the top of the stack.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 28 / 52

jonasskeppstedt.net

Execution of Cleanup Handlers

There are three situations when one or all cleanup handlers are
executed:

1 When a thread is being terminated due to a cancellation.
2 When a thread is being terminated due to it has called pthread_exit.
3 When it has called pthread_cleanup_pop with a nonzero parameter.

In the last case, only one cleanup handler is executed, as we just saw.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 29 / 52

jonasskeppstedt.net

Synchronization in Pthreads

Pthreads has three main primitives for synchronization:
mutex
condition variable
barrier

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 30 / 52

jonasskeppstedt.net

Avoid synchronization!

Ideally a parallel program needs no synchronization.
Synchronization and therefore data communication between
threads/caches take time.
Some problems can be divided into suitable tasks statically.
However, a common problem if T tasks are statically assigned to P
threads is that some tasks take more time and therefore there
becomes an inbalance in the work load, i.e. some threads take much
longer time than the others.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 31 / 52

jonasskeppstedt.net

Mutex

A POSIX Threads mutex is a lock with a sleep queue
The type is pthread_mutex_t and the most important functions
related to it are:
pthread_mutex_init

pthread_mutex_destroy

pthread_mutex_lock

pthread_mutex_trylock

pthread_mutex_unlock

All five take a pointer to a pthread_mutex_t, and
pthread_mutex_init also takes a pointer to attributes, which may
be NULL.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 32 / 52

jonasskeppstedt.net

Lock a mutex twice

Trying to lock the same mutex multiple times does not work by
default:

pthread_mutex_t A;

pthread_mutex_init(&A, NULL);
pthread_mutex_lock(&A);
pthread_mutex_lock(&A);

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 33 / 52

jonasskeppstedt.net

Recursive Mutex

We must initialize the mutex as follows for this:

pthread_mutex_t A;
pthread_mutexattr_t attr;

pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&A, &attr);

pthread_mutex_lock(&A);
pthread_mutex_lock(&A);

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 34 / 52

jonasskeppstedt.net

Worklists

Assume we have a number of tasks to be processed.
We put the tasks in lists and create threads which take tasks from the
lists and process them.
Concurrently adding or removing of items in the lists means the lists
must be protected.
Two alternatives:

1 Put a mutex lock in each list head, i.e. protect the data.
2 Use a common mutex for all lists, i.e. protect the code.

Which is best depends on the application. There can be more
concurrency if each list head has its own lock, at the cost of memory...

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 35 / 52

jonasskeppstedt.net

Condition variables in Pthreads

As in Java, a condition variable lets a thread wait for something to
happen in the future, and another thread to inform it that it has
happened.
For example: a worker thread can wait for a task being inserted in the
list and another thread can signal any waiting thread that it just has
inserted a new task.
The condition variable type is: pthread_cond_t.
In addition to initialization and destruction functions the main
functions are:

pthread_cond_wait — causes calling thread to wait
pthread_cond_signal — wakes up one waiting thread
pthread_cond_broadcast — wakes up all waiting threads

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 36 / 52

jonasskeppstedt.net

Pthread mutex and condition variable

Suppose you have locked a mutex and want to wait
You need to both unlock and wait
So that is done in one function atomically

pthread_cond_wait(&cond, &mutex);

If they were two separate functions we would have problems
Unlocking first could miss a signal
(and waiting first could not unlock the mutex...)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 37 / 52

jonasskeppstedt.net

More Details

One mutex may be used for multiple condition variables
Two threads wanting to wait for the same condition variable must use
the same mutex.
It is OK to signal a condition variable without having locked the
corresponding mutex, but not so common.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 38 / 52

jonasskeppstedt.net

Predicate, Condition Variable, and Mutex

The logic expression in the C code which decides whether a thread
should wait on the condition variable is called the predicate
associated with the condition variable.
The predicate is computed from shared data which different threads
can modify, and therefore that data must be protected using a mutex.
For example, the predicate may be computed by a boolean function:

bool empty(buffer_t* buffer);

The predicate should always be tested in a loop and not in an
if-statement.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 39 / 52

jonasskeppstedt.net

Why You Need A Loop

You should write your code like this.

pthread_mutex_lock(&mutex);
while (!predicate())

pthread_cond_wait(&cond, &mutex);
/* do something... */
pthread_mutex_unlock(&mutex);

There are at least three reasons for doing so:
1 Intercepted wakeups: Another thread might have locked the mutex

before.
2 Loose predicates: This is a kind of predicate that says ”the predicate

may be true (but check before relying on it).”
3 Spurious wakeups: This is very uncommon and is essentially an error

that a thread was woke up without any good reason.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 40 / 52

jonasskeppstedt.net

Intercepted Wakeups

Should you signal a condition variable before or after you unlock its
associated mutex (in case you have it locked) ???
If you signal first, then the woke up thread will immediately try to lock
the mutex and find it locked and wait again, now instead on a mutex,
causing unnecessary synchronization overhead, both in the form of
instructions and cache misses
There may already be another thread waiting for the mutex which
then later gets the mutex first
If you unlock first, there may be a higher chance another thread takes
the lock before the thread you wake up.
It means the predicate might not longer be true after the other thread
has unlocked the lock and it is your turn.
This is called an intercepted wakeup.
Due to intercepted wakeups, you must check the condition in a loop.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 41 / 52

jonasskeppstedt.net

Loose Predicates

It may be more convenient and/or efficient to say ”you might have
something interesting to check out” rather promising something.
The woke up thread then must itself determine if there really was
something for it, or whether it should continue waiting.
This is called a loose predicate.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 42 / 52

jonasskeppstedt.net

Spurious Wakeups

When you hit CTRL-C to terminate a program you send a so called
UNIX signal to it. This use of the word signal has nothing to do with
the signal function of condition variables.
When a thread receives a UNIX signal and was in the UNIX kernel
waiting for a system call to complete, that system call is terminated
and returns with the error code EINTR.
Some UNIX signals are sent to all threads of a running program
(called a process) and a thread waiting on a condition variable, i.e. in
a system call on UNIX will thus be interrupted to handle the signal.
An interrupted system call is not resumed but the application proceeds
after it has returned.
In principle a system call used by pthread_cond_wait could be
interrupted and result in a spurious wakeup, but that is not the
behaviour on Linux which uses the futex system call described below.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 43 / 52

jonasskeppstedt.net

Implementation of Linux Native Pthreads Library

Should a mutex lock involve the Linux kernel?
Preferably not because it takes a lot of time
On Linux there is a low-level synchronization primitive called futex
which is used to implement the Pthreads library.
Two good C libraries: gnu libc (glibc) and musl
Linux command to show system calls: strace -f ./a.out

-f tells it to trace threads and other programs it has forked (created)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 44 / 52

jonasskeppstedt.net

User Level Locking with Futex in Linux

Originates from IBM Research and the IBM Linux Technology Center.
Implemented in the GNU C Library and in the Linux kernel, since
version 2.5.7.
The lock variable is in user space in shared memory and there is a
corresponding wait queue for a lock in the kernel.
The fast case is when there is no contention for the lock and therefore
the kernel needs not be involved.
The lock is manipulated in user space with atomic instructions (or the
equivalent).

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 45 / 52

jonasskeppstedt.net

Initialization of a Pthread Mutex

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

This initializes the mutex with default attributes.
PTHREAD_MUTEX_INITIALIZER is a constant expression, meaning we
can initialize a mutex like this at file scope (static storage, ie a static
or global variable).
If allocated by eg malloc, then pthread_mutex_init() should be
called.
After usage, pthread_mutex_destroy should be called for a mutex,
and then its memory should be deallocated using free, if appropriate.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 46 / 52

jonasskeppstedt.net

pthread_cond_timedwait

To wait on a condition variable with a time out, use
pthread_cond_timedwait.
int pthread_cond_timedwait(

pthread_cond_t*,
pthread_mutex_t*,
struct time_spec*);

The time is absolute time and to wait eg for at most 3 seconds, one
can use:
timeout.tv_sec = time(NULL) + 3;
timeout.tv_nsec = 0;

If there is a time out, the return value is ETIMEDOUT.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 47 / 52

jonasskeppstedt.net

Pthreads barriers

A barrier is used to let all threads work in a more synchronous way.
All threads must reach pthread_barrier_wait before any can
proceed beyond it.

int pthread_barrier_init(
pthread_barrier_t* barrier,
pthread_barrierattr_t* attr,
unsigned int count);

int pthread_barrier_destroy(pthread_barrier_t* barrier);

int pthread_barrier_wait(pthread_barrier_t* barrier);

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 48 / 52

jonasskeppstedt.net

Initialization in sequential programs

The usual sequential way to initialize is to do like this:
#include <stdbool.h>
void f(void)
{

static bool initialized = false;
if (!initialized) {

init();
initialized = true;

}
...

}

Might not work in a multithreaded program!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 49 / 52

jonasskeppstedt.net

Initialization in multithreadthreaded programs

#include <stdbool.h>
pthread_mutex_t init_lock;
void f(void)
{

static bool initialized = false;
pthread_mutex_lock(&init_lock);
if (!initialized) {

init();
initialized = true;

}
pthread_mutex_unlock(&init_lock);

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 50 / 52

jonasskeppstedt.net

pthread_once

One can write pthread_once_t once = PTHREAD_ONE_INIT;.
The once variable can have static storage duration.
The function

int pthread_once(pthread_once_t*, void (*)(void));

is used to call a function once. It takes a pointer to a ”once” variable
and a function to execute for the initialization.
If another thread executes the same call after the first is done, nothing
will happen.
If it instead calls it during the first call, the second thread will wait
until the first call is done.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 51 / 52

jonasskeppstedt.net

Thread attributes

Examples of attributes which can be set:
Whether another thread can join with a particular thread (portable).
Stack address
Stack size (not portable)

A thread which is not joinable is ”detached” which means the resource
used by the thread are recycled immediately when the thread
terminates.
The joinable attribute can be set to one of

PTHREAD_CREATE_JOINABLE, or
PTHREAD_CREATE_DETACHED.

An initially joinable thread can make itself detached but not vice versa.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 3 2023 52 / 52

jonasskeppstedt.net

