
High-level parallel programming: Scala/Akka on the JVM

Contents of Lecture 2
The Scala programming language
Actors
Parallel programming with Akka

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 1 / 43

jonasskeppstedt.net


Purpose of this lecture

That you will understand why Scala may be interesting
You will understand the key concepts of message passing using actors,
introduced by Carl Hewitt at MIT 1973.
You will understand enough about Scala actors that you can write a
parallel version of the preflow-push algorithm in Scala

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 2 / 43

jonasskeppstedt.net


Scala and Akka

Martin Odersky designed Generic Java and the Java compiler javac
for Sun. He is a professor at EPFL in Lausanne.
The Scala language produces Java byte code and Scala programs can
use existing Java classes.
When you run a Scala program, the JVM cannot see any difference
between Java and Scala code.
A good source to start with Akka:
https://developer.lightbend.com/start

Or start with the example at Tresorit
Akka was created by Jonas Bonér from Sweden
Lightbend is a company founded by Odersky, Bonér and another
person.
Download sbt: https://www.scala-sbt.org/download.html

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 3 / 43

jonasskeppstedt.net


Scala is a functional and object oriented language

It is intended to be scalable and suitable to use from very small to
very large programs.
The Scala compiler, scalac, usually can infer the types of variables so
you don’t have to type them.

var capital = Map("Denmark" -> "Copenhagen", "France" -> "Paris", "Sweden" -> "Stockholm");

capital += ("Germany" -> "Berlin");

println(capital("Sweden"));

There is no need to declare the type of the variable capital since
scalac can do it for you.
Less typing can potentially lead to faster programming — at least if
the tedious part of the typing can be eliminated.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 4 / 43

jonasskeppstedt.net


Shorter class declarations

A short class declaration in Scala:

class Example(index: Int, name: String)

The same class in Java:

class Example {
private int index;
private String name;

public Example(int index, String name) {
this.index = index;
this.name = name;

}
}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 5 / 43

jonasskeppstedt.net


Redefinable operators as in C++

def factorial(x: BigInt): BigInt = if (x == 0) 1 else x * factorial(x - 1)

A function is defined using def and = and an expression.
Or using the Java class BigInteger:

import java.math.BigInteger;

def factorial(x: BigInteger): BigInteger =
if (x == BigInteger.ZERO)

BigInteger.ONE
else

x.multiply(factorial(x.subtract(BigInteger.ONE)))

It is obvious which is nicer.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 6 / 43

jonasskeppstedt.net


Scala is statically typed

Lisp, Smalltalk, Ruby, Python and many other languages are
dynamically typed, which means type checking is performed at
runtime.
Scala and to a very large extent also C are statically typed.
Of course, C is a very small language and much easier to type check.
For C, if you use <stdarg.h> (which you usually shouldn’t) or insane
casts (which result in undefined behaviour = serious bug) the C
compiler will not help you.
Look at this program:

(defun sumlist (h)
(if (null h) 0 (+ (car h) (sumlist (cdr h)))))

(setq b ’(1 2 3 4))
(setq c ’("x" "y" "z"))

(print (sumlist b))
(print (sumlist c))

Which language is it?
When is the error detected during dynamic type checking?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 7 / 43

jonasskeppstedt.net


Answers
(defun sumlist (h)

(if (null h) 0 (+ (car h) (sumlist (cdr h)))))

(setq b ’(1 2 3 4))
(setq c ’("x" "y" "z"))

(print (sumlist b))
(print (sumlist c))

The language is Common Lisp.
The error is detected when adding the string "z" to zero: Old
measurement from several years back (also for C below)

> time clisp a.lisp

10
*** - +: "z" is not a number

real 0m0.062s
user 0m0.045s
sys 0m0.017s

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 8 / 43

jonasskeppstedt.net


A C Compiler must issue a diagnostic message
#include <stdlib.h>

typedef struct list_t list_t;

struct list_t {
list_t* next;
int value;

};

list_t* cons(int value, list_t* list)
{

list_t* p;

p = malloc(sizeof(list_t));
if (p == NULL)

abort();
p->value = value;
p->next = list;

return p;
}

int sumlist(list_t* h)
{

return h == NULL ? 0 : h->value + sumlist(h->next);
}

int main(void)
{

list_t* p;
list_t* q;

p = cons(1, cons(2, cons(3, cons(4, NULL))));
q = cons("x", cons("y", cons("z", NULL))); // static type error

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 9 / 43

jonasskeppstedt.net


GCC output

> time gcc a.c
a.c: In function ’main’:
a.c:35: warning: passing argument 1 of ’cons’ makes integer from pointer without a cast
a.c:11: note: expected ’int’ but argument is of type ’char *’
a.c:35: warning: passing argument 1 of ’cons’ makes integer from pointer without a cast
a.c:11: note: expected ’int’ but argument is of type ’char *’
a.c:35: warning: passing argument 1 of ’cons’ makes integer from pointer without a cast
a.c:11: note: expected ’int’ but argument is of type ’char *’

real 0m0.150s
user 0m0.103s
sys 0m0.047s

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 10 / 43

jonasskeppstedt.net


Clang output

> time clang -S a.c
a.c:35:31: warning: incompatible pointer to integer conversion passing

’char [2]’ to parameter of type ’int’
q = cons("x", cons("y", cons("z", NULL)));

^~~
a.c:11:18: note: passing argument to parameter ’value’ here
list_t* cons(int value, list_t* list)

^
a.c:35:21: warning: incompatible pointer to integer conversion passing

’char [2]’ to parameter of type ’int’
q = cons("x", cons("y", cons("z", NULL)));

^~~
a.c:11:18: note: passing argument to parameter ’value’ here
list_t* cons(int value, list_t* list)

^
a.c:35:11: warning: incompatible pointer to integer conversion passing

’char [2]’ to parameter of type ’int’
q = cons("x", cons("y", cons("z", NULL)));

^~~
a.c:11:18: note: passing argument to parameter ’value’ here
list_t* cons(int value, list_t* list)

^
3 warnings generated.

real 0m0.050s
user 0m0.030s
sys 0m0.020s

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 11 / 43

jonasskeppstedt.net


A Scala compiler must issue a diagnostic message

class Test {
def sumlist(h:List[Int]) : Int = if (h.isEmpty) 0 else h.head + sumlist(h.tail);
var a = List(1,2,3,4);
var b = sumlist(a);
var c = List("x", "y", "z");
var d = sumlist(c);

}

> time scalac a.scala
a.scala:6: error: type mismatch;
found : List[java.lang.String]
required: List[Int]
var d = sumlist(c);

^
one error found

real 0m1.697s
user 0m4.384s
sys 0m0.088s

Measurement made on login.student.lth.se September 12, 2019.
The type analysis for Scala is of course more complex than for C.
Avoid compilers with this compilation speed for large source code
Compilation speed of Scala may improve significantly in the future.
Previous measurement was 11 s.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 12 / 43

jonasskeppstedt.net


The Fast Scala compiler

There is a server program fsc which is faster than scalac because it
avoids some initializations.
Clang and Common Lisp were fastest.
clisp was originally written in assembler and Lisp for Atari machines
but has been rewritten in portable C and Lisp.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 13 / 43

jonasskeppstedt.net


The Scala build tool: sbt

sbt is a tool which downloads required libraries, starts the Scala
compiler and runs the program
It will try to make a Scala program by compiling all Scala files in the
current directory — so keep only one version of your program there!
In the lab it is sufficient to type make. Abbreviated output:

$ make
./sbt run < i
[info] loading settings for project lab1 from build.sbt
[info] running main
f = 9924
t = 3.85 s

Ignore the following errors!

$ make
../data/tiny/0.in
Error: Unable to access jarfile /home/js/teacher-multicore/lab1/sbt-dist/bin/java9-rt-export.jar
mkdir: cannot create directory ‘’: No such file or directory
Error: Unable to access jarfile /home/js/teacher-multicore/lab1/sbt-dist/bin/java9-rt-export.jar
PASS ../data/tiny/0.in

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 14 / 43

jonasskeppstedt.net


Scala basics: val vs var

Writing var a = 1, we declare an initialized Int variable that we can
modify.
With val a = 1, a becomes readonly instead.
The following declares an array:

val a = new Array[String](2);
a(0) = "hello";
a(1) = "there";

Note that it is a that is readonly, not its elements.
We can iterate through an array like this, for example:

for (s <- a) println(s);

We should not declare the variable s.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 15 / 43

jonasskeppstedt.net


Numbers are objects

Consider

for (i <- 0 to 9) println(i);

Here the zero actually is an object with the method to.
In many cases a method name can be written without the dot but
rather as an operator.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 16 / 43

jonasskeppstedt.net


Companion classes

In Java you can have static attributes of a class which are shared by
all objects of that class.
In Scala, you instead create a companion class with the keyword
object instead of class:

object A {
var a = 44;

}

class A {
println("a = " + A.a);

}

object Main {
def main(args: Array[String]) {

val a = new A;
}

}

By default attributes are public in all Scala classes, but an object
may access a private attribute of its companion class.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 17 / 43

jonasskeppstedt.net


Class declarations with attributes

You can declare a class like this:

class B(u: Int, var v: Int) {
def f = u + v;

}

The parameters of a constructor by default become val attributes of
the class.
Therefore only v can be modified.
Even if you only need the parameters in the constructor, they become
attributes and cheerfully consume memory for you.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 18 / 43

jonasskeppstedt.net


Code reuse in Scala using traits

Scala uses single inheritance as Java with the same keyword extends.
Instead of Java’s interfaces which only provide abstract methods,
Scala has the concept of a trait.
Unlike an interface, a trait can contain attributes and code, however.
A trait is similar to a class except that the constructor cannot have
parameters.

object Main {
def main(args: Array[String]) {

val a = new C(44);

a.hello;
a.bye;

}
}

class A(u: Int) {
def bye { println("bye bye with u = " + u); }

}

trait B {
def hi { println("hello"); }

}

class C(v: Int) extends A(v) with B {
def hello { hi; }

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 19 / 43

jonasskeppstedt.net


Lists

The standard class List is singly linked and consists of a pair of data
and a pointer to the next element.
An empty list is written either as Nil or List().
Five (of many) methods are:

:: — create a list: val h = 1 :: 2 :: 3 :: Nil, which means:
val h = (1 :: (2 :: (3 :: Nil))).
This can also be written as val h = List(1, 2, 3)
::: — create a new list by concatenating two lists.

val a = List(1, 2, 3);
val b = List(4, 5, 6);
val c = a ::: b;

isEmpty — boolean
head — data in first element
tail — the rest of the list starting with the 2nd element.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 20 / 43

jonasskeppstedt.net


Reversing a List 1(2)

def rev[T](h:List[T]) : List[T] = {
if (h.isEmpty)

h;
else

rev(h.tail) ::: List(h.head);
}

This function is generic with element type T.
It’s not the most efficient way to reverse a list since list concatenation
must traverse the left operand list.
This version of reverse has quadratic time complexity.
How can we do it in linear time?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 21 / 43

jonasskeppstedt.net


Reversing a List 2(2)

def rev1[T](h : List[T], q : List[T]) : List[T] = {
if (h.isEmpty)

q;
else

rev1(h.tail, h.head :: q);
}

def rev[T](h : List[T]) : List[T] = {
rev1(h, List());

}

Faster.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 22 / 43

jonasskeppstedt.net


Pattern matching in Scala

Pattern matching means we provide a sequence of cases against which
the input data is matched.
The first case that matches the input data is executed.

def rev[T](xs: List[T]) : List[T] = xs match {
case List() => xs;
case x :: xs1 => rev(xs1) ::: List(x);
}

The reverse of the empty list is the parameter xs.
The non-empty list matches a list with at least one element, as in the
second case.
Pattern matching is used extensively in functional programming.
We will use pattern matching when receiving actor messages.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 23 / 43

jonasskeppstedt.net


Programming with actors in Scala

Programming with actors is in one sense just writing another
multithreaded program.
In another sense it’s completely different because you should use no
locks or condition variables (see later in the course) or the like.
An actor is like a thread which sits and waits for a message to arrive.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 24 / 43

jonasskeppstedt.net


Sending a message

With actors, messages are sent to an actor — and not to a mailbox or
channel as in some other systems.
A message can be a variable or a type
Assume an actor A has a reference to another actor B, then A can send
messages of types C and D to B using:

val e = 124
B ! C;
B ! D(42);
B ! e;

The sending actor immediately continues execution without waiting for
the message to arrive.
Without a parameter, the message type should be declared as:
case object C

With a parameter, instead use: case class D(x:Int)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 25 / 43

jonasskeppstedt.net


Receiving a message

case object C
case class D(x: Int)
case object Thanks

def receive = {

case D(x: Int) => println("got a D with x = " + x)

case C => { println("got a C"); sender ! Thanks }

case e:Int => println("got an Int e = " + e)

}

The sending actor is sender
Case classes and objects must start with a capital otherwise they
become variables which match everything
When there are problems, use a variable in a last case and print it

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 26 / 43

jonasskeppstedt.net


Evaluating a message

With pattern matching on the message, the action to perform is
selected.
If there is no match, the message is discarded.
After performing it, the actor repeats the waiting for another message,
It’s not necessarily easier to program with actors than with locks.
For instance, you can end up with a deadlock if two actors are waiting
for messages from each other.
A message never interrupts an actor — the actor processes a message
to completion before processing the next message

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 27 / 43

jonasskeppstedt.net


Message arrival

In some actor-based systems the arrival order of messages is not
specified — even for messages from the same sender.
For Scala actors, messages sent from one actor to another always
arrive in the same order as they were sent.
When an actor has created/modified data and sent a message to
another actor, that data will be visible through the cache memory in
the receiving thread so there is no need to use volatile as in Java
As we will see, there is a volatile keyword in C/C++ as well but it
means something else

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 28 / 43

jonasskeppstedt.net


Sharing mutable data and data-races

If you share a message with data that both actors may want to
modify, you can have a data-race
For preflow push, for an edge (u, v) both nodes may at some point
want to modify the flow of their edge
If in your implementation both u and v can modify the flow at the
same point in time, you have a data-race
The nodes should be actors but although the edges could be actors as
well, the program will be unnecessarily complicated then so use normal
objects for the edges

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 29 / 43

jonasskeppstedt.net


Sharing data between actors in general

This is not so much relevant for the lab but still very important
Suppose actors have vectors or other larger data which they update
and sometimes share with other actors
When an actor X asks for the vector of another actor Y and:

Y is fine with giving the vector to X , but
Y wants to continue modifying the vector, then

instead of creating a data-race by having both X and Y access the
vector we can do as follows:

Y can make a copy of the vector and give it to X so X can do what it
wants

If X and possibly other actors only want to read the vector we can
instead do:

Y can make a copy of the vector that it shares with any actor as
immutable data (immutable = readonly)
Y can have one internal vector that it modifies itself and when
sufficiently done it can copy it and let future actor requests see that
instead

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 30 / 43

jonasskeppstedt.net


Declaring and creating an Actor

An actor class can be declared as:

class Node(val index: Int) extends Actor {
var e = 0; // excess preflow
var h = 0; // height

}

But we do not make an array n of Node objects:

var node: Array[ActorRef] = null
node = new Array[ActorRef](n)

for (i <- 0 to n-1)
node(i) = system.actorOf(Props(new Node(i)), name = "v" + i)

So we create an array of ActorRef
A ”factory” creates each actor, i.e. not simply new Node(i)

We will soon see what system is

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 31 / 43

jonasskeppstedt.net


A Preflow actor

It is often convenient to have a central controller which determines
when an algorithm is finished.
Two disadvantages with this approach are

1 A single controller can be a performance bottleneck — risk in lab 1
2 A single point of failure can cause a service to fail — ignore in lab 1

Usually when an algorithm is parallelized to be run on a multicore
computer we assume crashes are software bugs
In a distributed system we need to be more careful
Such care obviously creates overhead which we want to avoid in a
multicore
When only the sink has a positive excess preflow, we can stop

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 32 / 43

jonasskeppstedt.net


The Ceberg termination criterion

The source starts with a negative excess preflow after it has pushed to
each neighbor
Then the source possibly gets some flow back
The excess preflow of the source increases monotonically
That is |ef (s)| decreases monotonically
The sink gets more and more, ie ef (t) increases monotonically
When the |ef (s)| = ef (t) no other node can have any excess preflow
Then we are finished
This is easier to detect than counting the number of nodes with excess
preflow
Invented by Nils Ceberg (who took the course 2021).
Although this may seem obvious, current published articles on
distributed preflow push don’t do this

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 33 / 43

jonasskeppstedt.net


Declaring and creating the controller actor

The controller can be declared without parameters as:

class Preflow extends Actor
{

var s = 0;
var t = 0;
var n = 0;
var edge:Array[Edge] = null
var node:Array[ActorRef] = null

}

Let the sink tell the source when it has received more preflow

val system = ActorSystem("Main")
val control = system.actorOf(Props[Preflow], name = "control")

Without parameters, it is simpler to create an actor
Note the different syntax compared to creating the node actors

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 34 / 43

jonasskeppstedt.net


self vs this

Suppose we have

class A extends Actor { }

Then this refers to A and self to ActorRef

For the controller to send a reference to itself to a node u, use self:

u ! Control(self) // u i s an ActorRef in the array node

For a node to save the controller parameter, use this:

case Control(control:ActorRef) => this.control = control

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 35 / 43

jonasskeppstedt.net


Waiting for an answer

We can create a timeout and use ? when sending a message:

implicit val t = Timeout(4 seconds);
val flow = control ? Maxflow
val f = Await.result(flow, t.duration)
println("f = " + f)

The type of the sender is ActorRef

var ret:ActorRef = null
case Maxflow => {

ret = sender // save sender for a future reply
node(s) ! Source(n) // t e l l s i t i s source and has h = n
node(t) ! Sink // t e l l t i t i s s ink
node(s) ! Start // t e l l s to do i n i t i a l pushes

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 36 / 43

jonasskeppstedt.net


Stopping the actors

The stop method can be used:

system.stop(control);
for (i <- 0 to n-1)

system.stop(node(i))
system.terminate()

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 37 / 43

jonasskeppstedt.net


Useful functions of a Node

def id: String = "@" + index; // easy to grep or search for

def status: Unit = {
if (debug) println(id + " e = " + e + ", h = " + h);

}

def enter(func: String): Unit = {
if (debug) { println(id + " enters " + func); status }

}

def exit(func: String): Unit = {
if (debug) { println(id + " exits " + func); status }

}

def relabel : Unit = {
enter("relabel")
h += 1
exit("relabel")

}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 38 / 43

jonasskeppstedt.net


Increasing parallelism when doing push

Think through what you need to do for a push
Do you need to wait for a reply?
What should the reply be in that case?
If you want to wait for a reply, can you then do multiple pushes
concurrently?
By concurrently here is meant to have sent multiple ”push” messages
before waiting for a reply from each
See pdf for lab 1 for requirements to pass the lab
If this would not be about network flow but instead chat messages to
a group, you probably would want to send multiple messages
concurrently

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 39 / 43

jonasskeppstedt.net


The adjacency list of a Node

var edge: List[Edge] = Nil // at Node construction

def discharge: Unit = { // do pushes or re l abe l
var p: List[Edge] = Nil // pointer into edge
var a:Edge = null // edge to work with

p = edge
while (p != Nil) {

a = p.head
p = p.tail

}
}

This is one option to iterate through the adjacency list
Note that you may want to wait for a reply before doing the next edge
Try to increase parallelism by doing multiple pushes before waiting for
a reply!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 40 / 43

jonasskeppstedt.net


What to do in the lab

Take the smallest input, draw the graph on paper, and write down all
messages that should be sent.
When you are happy with that, you may want to try bigger input or
start thinking about source code.
You will get an incomplete program which:

measures execution time
reads the input and creates the graph
asks the controller to compute the maximum flow
stops the actors

You need to write code for:
iterate through the adjacency list and do push
if no push could be done due to heights of neighbors, do a relabel
tell controller when the sink has received more excess preflow

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 41 / 43

jonasskeppstedt.net


Hint: actor decision making

When two or more actors are involved in a decision (such as whether it
is the right time to do a push) it is important to figure out who can
make the final decision so that no algorithm invariants are violated
Assume a node u asks a neighbor v for its height,
v replies with a height lower than the height of u, and
u pushes to v but before the push arrives, v has done a relabel (so the
push should not have been done).
How can you avoid this problem?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 42 / 43

jonasskeppstedt.net


Hint: debugging

Let each node have a debug attribute that you can enable/disable
easily without editing more than one line of source code
Start with the smallest inputs and compare the output from your
program with that from the sequential C program.
Use grep to find out what a certain node is doing:

forsete> cat i0
3 2 0 0
0 1 10
1 2 2
forsete> sbt run < i0 > x
forsete> grep @1 x

This should print out all lines from x in which node 1 does something
since node 1 is identified with @1

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 2 2023 43 / 43

jonasskeppstedt.net

