Research trends in Multicore Programming

Contents of Lecture 12
@ Power Efficient HTM
@ Thread-level speculation
@ Cl1Tester

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 1/8



jonasskeppstedt.net

Energy Efficient HTM

@ By Do and Dubois from USC in Los Angeles 2016

@ They found that over 42 % of aborted transactions have multiple
aborts

e By delaying the restarting of aborted transaction, energy can be saved

@ To each core a table is added which helps predict when it is better to
delay a restart

@ They found that up to 37 % energy could be saved this way
@ https://dl.acm.org/doi/10.1145/2875425

Lecture 12 2023 2/8

Jonas Skeppstedt (jonasskeppstedt.net)



jonasskeppstedt.net

HTM for speculative parallelization of for-loops

e By Salamanca, Amaral och Araujo, 2016 IEEE Trans par. distr. comp.
@ Thread-level speculation (TLS) implemented with HTM
@ Some loops cannot be analyzed by parallelizing compilers

@ In software thread-level speculation normal hardware is used and
data-races are detected and then the parallel execution of a loop is
aborted

@ This is normally difficult to make efficient

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 3/8



jonasskeppstedt.net

Evaluation on SPEC CPU2006

e SPEC CPU2006 contains single-threaded C/C++ and Fortran
benchmarks

@ It is an industry standard to evaluate compilers and CPUs
@ First version from 1989 and current from 2017

@ Some benchmarks were modified manually to run loops speculatively
in parallel

@ Four Intel and POWERS8 CPUs were used and speedup of up to 3.8
was noted

@ https://ieeexplore.ieee.org/document/38038067

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 4/8



jonasskeppstedt.net

A bug detector for C/C++ atomics

There are no data-races between accesses to atomic variables
How can bugs in lock-free data structures easily be found?
Writing a few test cases is clearly insufficient

Use stress tests which randomizes input and runs for hours.
Is that sufficient?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 5/8



jonasskeppstedt.net

A more systematic approach

Jonas Skeppstedt (jonasskeppstedt.net)

Evaluate all executions!
Obviously not practical for millions of randomized inputs.
Only a small number of test cases is realistic

But how can all executions be evaluated???

Lecture 12 2023

6/8



jonasskeppstedt.net

Cl1Tester from UC lrvine

@ The Cl1Tester is a library linked into the executable program

@ Clang/LLVM instruments the application program with calls to
Cl1Tester

@ Cll1Tester has own functions for threads, mutex and atomics

@ At runtime, Cl1Tester creates a graph showing the modification order
of atomic variables

@ Cl1Tester schedules the threads

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 7/8



jonasskeppstedt.net

Using the modification order graph

@ The graph can be used to see which executions have not yet been
tested

@ The graph could quickly become extremely huge

@ The key idea is to remove parts of the graph using semantics of
atomic operations

@ Using the graph, Cl1Tester can guarantee that all executions are
actually tested

@ The idea then is to find executions which triggers bugs
@ Compare this to running the program millions of times until it crashes
@ Cll1Tester can give much more useful information

http://plrg.ics.uci.edu/clltester

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 8/8



jonasskeppstedt.net

