
Research trends in Multicore Programming

Contents of Lecture 12
Power Efficient HTM
Thread-level speculation
C11Tester

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 1 / 8

jonasskeppstedt.net


Energy Efficient HTM

By Do and Dubois from USC in Los Angeles 2016
They found that over 42 % of aborted transactions have multiple
aborts
By delaying the restarting of aborted transaction, energy can be saved
To each core a table is added which helps predict when it is better to
delay a restart
They found that up to 37 % energy could be saved this way
https://dl.acm.org/doi/10.1145/2875425

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 2 / 8

jonasskeppstedt.net


HTM for speculative parallelization of for-loops

By Salamanca, Amaral och Araujo, 2016 IEEE Trans par. distr. comp.
Thread-level speculation (TLS) implemented with HTM
Some loops cannot be analyzed by parallelizing compilers
In software thread-level speculation normal hardware is used and
data-races are detected and then the parallel execution of a loop is
aborted
This is normally difficult to make efficient

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 3 / 8

jonasskeppstedt.net


Evaluation on SPEC CPU2006

SPEC CPU2006 contains single-threaded C/C++ and Fortran
benchmarks
It is an industry standard to evaluate compilers and CPUs
First version from 1989 and current from 2017
Some benchmarks were modified manually to run loops speculatively
in parallel
Four Intel and POWER8 CPUs were used and speedup of up to 3.8
was noted
https://ieeexplore.ieee.org/document/8038067

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 4 / 8

jonasskeppstedt.net


A bug detector for C/C++ atomics

There are no data-races between accesses to atomic variables
How can bugs in lock-free data structures easily be found?
Writing a few test cases is clearly insufficient
Use stress tests which randomizes input and runs for hours.
Is that sufficient?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 5 / 8

jonasskeppstedt.net


A more systematic approach

Evaluate all executions!
Obviously not practical for millions of randomized inputs.
Only a small number of test cases is realistic
But how can all executions be evaluated???

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 6 / 8

jonasskeppstedt.net


C11Tester from UC Irvine

The C11Tester is a library linked into the executable program
Clang/LLVM instruments the application program with calls to
C11Tester
C11Tester has own functions for threads, mutex and atomics
At runtime, C11Tester creates a graph showing the modification order
of atomic variables
C11Tester schedules the threads

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 7 / 8

jonasskeppstedt.net


Using the modification order graph

The graph can be used to see which executions have not yet been
tested
The graph could quickly become extremely huge
The key idea is to remove parts of the graph using semantics of
atomic operations
Using the graph, C11Tester can guarantee that all executions are
actually tested
The idea then is to find executions which triggers bugs
Compare this to running the program millions of times until it crashes
C11Tester can give much more useful information

http://plrg.ics.uci.edu/c11tester

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 12 2023 8 / 8

jonasskeppstedt.net

