
Locking vs lock-free

Contents of Lecture 11
Purpose of using lock-free data structures
Terminology
Comparing locking, lock-free and transactional memory
Lock-free data structures: stack and fifo queue

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 1 / 13

jonasskeppstedt.net


Purpose of using lock-free data structures

Suppose we need to scale our computations to use hundreds or
thousands of threads
Two important problems with locking:

Limited scaling due to serialization at a lock. Severity depends on lock
contention, of course.
Using fine grained locking may be complex (and lead to hard to find
bugs).

Compare speed limits in cities with traffic signals vs Autobahn.
What can we do?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 2 / 13

jonasskeppstedt.net


Examples of ”unexpected delays”

The thread currently owning the lock may:
be preempted by OS kernel due to:

interrupt due to disk operation completed, network packet arrived, etc
another thread should run

get a page fault (page must be fetched from disk)
get a TLB fault

translation-lookaside table fault
a virtual memory page translation must be updated in the CPU
not part of this course

get a cache miss

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 3 / 13

jonasskeppstedt.net


Key idea with lock-free data structures

Use atomic variables
Let multiple threads work on a data structure concurrently
Detect if some other thread modified it before us
If so, do something sensible such as update some variable and try again
How can we detect such modifications?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 4 / 13

jonasskeppstedt.net


Recall atomic operations

Using assignment operators ensures an atomic read-modify-write.

atomic_int a;

a += 1;

The following is not an atomic read-modify-write.

atomic_int a;

a = a + 1;

We would do one atomic read, an add, and an atomic write using
sequential consistency but there is no guarantee the new value is
exactly one more than the old.
For integers it is sometimes possible to use assignment operators but
not always!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 5 / 13

jonasskeppstedt.net


Another example

atomic_int a;

a = f(a);

For add, we can do +=

In the general case we need something else.
What can we do?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 6 / 13

jonasskeppstedt.net


This is what we want to do

atomic_int a;
int old_a;
int new_a;

old_a = a;

new_a = compute_a(old_a);

a = new_a; /∗ but only i f a == old_a ∗/

How can we do this?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 7 / 13

jonasskeppstedt.net


Recall atomic compare exchange from Lecture 6

bool atomic_compare_exchange_weak(
volatile A* ptr,
C* expected,
C value);

You can ignore the volatile

Recall how it is defined:

if (*ptr == *expected)
*ptr = value;

else
*expected = *ptr;

Operation introduced for IBM System 370
Also called atomic compare and swap and written CAS

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 8 / 13

jonasskeppstedt.net


Using atomic compare exchange

atomic_int a;
int old_a;
int new_a;

old_a = a;
do

new_a = compute_a(old_a);
while (!atomic_compare_exchange_weak(&a, &old_a, new_a));

This modifies a only if a == old_a.
If they are not equal, the current value of a is copied to old_a

You may want to think of this function as:
Is it I who should modify the variable now? (or somebody else?)
What we essentially do is detecting a data-race and retry
But can we be sure no other threads modified a ?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 9 / 13

jonasskeppstedt.net


Answer to previous slide’s question

We cannot be sure.
a may have been incremented and decremented back to old_a

Sometimes that matters and at other times not.
It is called the ABA-problem.
x had value A, then B , and then A again.
It can cause chaos if the atomic variable is e.g. a pointer to a list, and
the pointer is both freed and malloced again. Then one thread may
think it still has the list pointer (and can use a next field) but that will
not work.
We will come back to it later in this lecture and see a solution in detail.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 10 / 13

jonasskeppstedt.net


Some terminology

An algorithm is blocking if one thread can delay another thread.
For example algorithms with mutexes are blocking.
An algorithm is non-blocking if one thread cannot delay other
threads.
An algorithm is lock-free if at least one thread can make progress
after a finite number of steps.
This means the program makes progress but individual threads may
have to wait a long time.
An algorithm is wait-free if every thread can make progress after a
finite number of steps.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 11 / 13

jonasskeppstedt.net


An example: slide 9

The code is non-blocking since there is no mutex
Is it lock-free ?
Or, will at least one thread leave the loop?
Yes, the thread that was lucky to read and write the variable
sufficiently close in time
Why? Trivial if we have an atomic instruction and also true if we have
load-and-reserve and store conditional, since only stores remove the
reservation of another thread.
Is it wait-free?
Or, will every thread make progress after a finite number of iterations?
No, an unlucky thread may loop an unbounded number of iterations

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 12 / 13

jonasskeppstedt.net


Locking vs lock-free vs transactional memory

Locking is in some sense pessimistic
Locking assumes there will be conflicts and avoids them
Lock-free is optimistic
Lock-free assumes there will be no conflict and detects them if they
happen — and tries again
Lock-free algorithms are much more complex to implement than
blocking algorithms
Transactional memory is also optimistic but trivial to get correct but
can have performance problems when used in the wrong context.
Which is fastest depends on the algorithm and input

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 11 2023 13 / 13

jonasskeppstedt.net

