OpenMP and Rust

Contents of Lecture 7

@ OpenMP
@ Rust

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 1/49

jonasskeppstedt.net

Parallel execution of software

o ldeally optimizing compilers would be able to parallelize source code.
@ From our example of the preflow-push algorithm, | think it's
impossible to write such a compiler.

@ Instead of writing new sequential programs we can for example use

o Java/C/CH+ threads, or
e Scala actors.

@ What about all existing codes?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 2/49

jonasskeppstedt.net

OpenMP for C/C++ and FORTRAN

@ Another option is tool support for manual parallelization:

e Programmer annotates the source code and guarantees the validity of
parallelization of a loop.
e Tool support: generating parallel code for a loop

@ GCC supports the OpenMP standard for this approach.

@ Include <omp.h> and annotate e.g. as:

#pragma omp parallel
#pragma omp for
for (i = 0; i < nj; ++i) {

}

@ Compile with gcc -fopenmp

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 3/49

jonasskeppstedt.net

The main advantage with OpenMP

@ We don’t want to rewrite millions of C/C+4 and FORTRAN codes
from scratch.

@ Using a new and relatively untested language may be a big risk.

@ Untested = less than a decade of community experience and tool
support

@ Support from only one company may also be problematic
@ With OpenMP we can parallelize our applications incrementally.

@ We can focus on one for-loop at a time.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 4/49

jonasskeppstedt.net

Origin of OpenMP

Jonas Skeppstedt (jonasskeppstedt.net)

All supercomputer companies had their own compiler directives to
support this "semi-automatic’ parallelization.

When SGI and Cray (one of the three Cray companies) merged they
needed to define a common set of compiler directives.

Kuck and Associates, a compiler company, and the U.S. ASCI
(Accelerated Strategic Computing Initiative) joined SGI and Cray.

In 1997 IBM, DEC, HP and others were invited to join the group now
called OpenMP.

In 1997 the specification for OpenMP 1.0 for FORTRAN was released.
Next year the specification for C/C++ was released.

The current version is OpenMP 5.2 and was published 2021.

Lecture 7 2023 5/49

jonasskeppstedt.net

OpenMP components

© Compiler directives. #pragma in C/C++.
@ A runtime library
© Environment variables, like OMP_NUM_THREADS.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 6 /49

jonasskeppstedt.net

Barriers

@ A barrier is a synchronization primitive which makes all threads
reaching the barrier wait for the last.

@ Similar to Pthreads barriers and not a "'memory barrier” in the sense of
a C11 memory fence

@ This barrier needs a lock, a counter, and knowing the number of
threads.

@ When the last thread has reached the barrier, all threads can proceed
and continue after the barrier.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 7 /49

jonasskeppstedt.net

#pragma omp parallel

@ A structured block of code is either

e a compound statement, i.e. a block enclosed in braces, or

e a for-loop.

@ The pragma omp parallel is used before a structured block of code
and specifies all threads should execute all of that block.

@ Note that this is typically not what we want in a for-loop, see below.

@ A default number of threads is used, which can be changed with the
environment variable OMP_NUM_THREADS, which can be larger than the

number of processors in the machine.

@ This pragma creates an implicit barrier after the structured block.

Jonas Skeppstedt (jonasskeppstedt.net)

Lecture 7

2023

8 /49

jonasskeppstedt.net

An example

#include <omp.h>
#include <stdio.h>

int main(void)

{
#pragma omp parallel
int tid; // thread id.
tid = omp_get_thread_num();
printf("hello world from thread %d\n", tid);
}
return O;
}

@ Since tid is declared in the compound statement, it becomes private.

@ omp_get_thread_num() returns an id starting with zero.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 9/49

jonasskeppstedt.net

OpenMP and Pthreads

@ The OpenMP runtime library creates the threads it needs using
Pthreads on Linux.

@ After a parallel block, the threads wait for their next work and are not
destroyed in between.

@ This model of parallelism is called fork-join and only the main thread
executes the sequential code.

@ It's possible to nest parallel regions.

Jonas Skeppstedt (jonasskeppstedt.net)

Lecture 7 2023 10/ 49

jonasskeppstedt.net

Parallel for-loops

@ In addition to the #pragma omp parallel you must also specify
#pragma omp for before the loop.

@ Without the second pragma each thread will execute all iterations.

@ Note that it's the programmer’s responsibility to check that there are
no data dependences between loop iterations.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 11 /49

jonasskeppstedt.net

Two OpenMP functions

@ To specify in the program how many threads you want, use

omp_set_num_threads(nthread) ;

@ To measure elapsed wall clock time in seconds, use
double start, end;
start = omp_get_wtime();

/* work. x/

end = omp_get_wtime() ;

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 12 /49

jonasskeppstedt.net

For loop scheduling

@ There are three ways to schedule for-loops:

@ schedule(static)

e The iterations are assigned statically in contiguous blocks of iterations.
e Static scheduling has the least overhead, obviously, but may suffer from
poor load imbalance, e.g. in an LU-decomposition.

@ schedule(dynamic) or schedule(dynamic, size)

e The default size is one iteration.

e A thread is assigned size contigouos iterations at a time.
@ schedule(guided) or schedule(guided, size)

e The default size is one iteration.

o With a size, a thread never (except possibly at the end) is assigned
fewer than size contigouos iterations at a time.

e The number of iterations assigned to a thread is proportional to the
number of unassigned iterations and the number of threads.

@ We can set the scheduling with the environment variable
OMP_SCHEDULE which must be one of above three but without the size.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7

jonasskeppstedt.net

An Example

#include <omp.h>
#include <stdio.h>

#define N (1024)
float al[N][N];
float b[N] [N];
float c[N][N];

int main(void)

{
int i;
int Js
int k;
#pragma omp parallel private(i,j,k)
#pragma omp for schedule(static, N/omp_get_num_procs())
for (i = 0; 1 < N; ++1i)
for (k = 0; k < N; ++k)
for (j = 0; j < N; ++j)
alilTj] += b[il (k] * clk]1[j];
return O;
}

@ We need private i, j and k since they are declared before the pragma.
@ If a function is called in a parallel region, all its local variables become
private.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 14 / 49

jonasskeppstedt.net

Parallel tasks

#pragma omp sections

{
#pragma omp section
{
work_a();
¥
#pragma omp section
{
work_b();
¥
¥

@ Each section is executed in parallel.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7

2023

15 / 49

jonasskeppstedt.net

Reductions

@ By a reduction is meant computing a scalar value from an array such
as a sum.

@ The loop has a data dependence on the sum variable.
@ How can we parallelize it anyway?

float a[N];
float sum;
int i;

for (sum = 1 = 0; i < N; ++i)
sum += ali];

Lecture 7 2023 16 / 49

Jonas Skeppstedt (jonasskeppstedt.net)

jonasskeppstedt.net

OpenMP reductions

@ By introducing a sum variable private to each thread, and letting each
thread compute a partial sum, we can parallelize the reduction:

float a[N];
float sum;
int i,

#pragma omp parallel

#pragma omp for

#pragma omp reduction(+:sum)

for (sum =i = 0; i < N; ++i)
sum += alil;

@ We can write the pragmas on one line if we wish:
#pragma omp parallel for reduction(+:sum)
for (sum = i = 0; i < N; ++i)
sum += alil;

@ There are reductions for: + - * & | =~ && || with suitable start
values such as 1 for * and ~0 for &.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 17 / 49

jonasskeppstedt.net

Critical sections

@ A critical sections is created as in:

#pragma omp critical

{
point->x += dx;
point->y += dy;

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 18 / 49

jonasskeppstedt.net

@ When one variable should be updated atomically, we can use:

#pragma omp atomic
count += 1;

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 19 / 49

jonasskeppstedt.net

Explicit barriers

@ Recall there is an implicit barrier at the end of a parallel region.

@ To create a barrier explicitly, we can use:

#pragma omp barrier

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 20/ 49

jonasskeppstedt.net

Work for one thread

@ Recall only the main executes the sequential code between parallel
regions.

@ If we wish only the main should execute some code in a parallel region,
we can use

#pragma omp master

@ If it doesn’'t matter which thread performs the work, we can instead
use

#pragma omp single

@ There is a difference between the two above constructs: an implicit
barrier is created after a single directive.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 21 /49

jonasskeppstedt.net

@ OpenMP supports two kinds of locks: plain locks and recursive locks.

@ Recall a thread can lock a recursive lock it already owns without
blocking for ever.

@ Recursive locks are called nested locks in OpenMP.

@ The lock functions are omp_init_lock, omp_set_lock,
omp_unset_lock, omp_test_lock and omp_destroy_lock, and
omp_nest_init_lock, omp_nest_set_lock,
omp_nest_unset_lock, omp_nest_test_lock and
omp_nest_destroy_lock

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 22 /49

jonasskeppstedt.net

OpenMP memory consistency model

@ Weak ordering is the consistency model for OpenMP.

@ The required synchronization instructions are inserted implicitly with
the above introduded directives.

@ A for loop can be created without an implicit barrier using nowait and
in that case #pragma omp flush makes caches consistent.

@ A list of variables to write back can be specified:
#pragma omp flush(a,b,c)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 23 /49

jonasskeppstedt.net

Open source compiler and company support for OpenMP

@ Non-profit consortium OpenMP architecture review board openmp.org
e Both GNU and Clang compilers (Clang only C/C++)

@ Absoft, AMD, ARM, Cray, HP, Fujitsu, IBM, Intel, Microsoft, Nvidia,
NEC, Oracle, Pathscale, Portland Group, Red Hat, Texas Instruments,

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 24 /49

jonasskeppstedt.net

Jonas Skeppstedt (jonasskeppstedt.net)

Hello world in Rust

Object ownership for single-threaded programs
Message passing

Threads

Shared memory objects in multi-threaded programs

Lecture 7

2023

25 / 49

jonasskeppstedt.net

Hello, world

fn main()
{

println! ("hello, world");
+

@ Save in a.rs and type rustc a.rs && ./a

@ Orin src/main.rs and type cargo run

@ With cargo you need a file Cargo.toml with some definitions, e.g.:

[package]
name = "preflow"
version = "0.0.1"

authors = ["Jonas Skeppstedt" 1]

[dependencies]
text_io = "0.1.8"

Jonas Skeppstedt (jonasskeppstedt.net)

Lecture 7 2023 26 / 49

jonasskeppstedt.net

Jonas Skeppstedt (jonasskeppstedt.net)

fn main()

{
let s = String::from("world");

println! ("hello, {} {}", s, "again");
+
@ Creates a string from the heap (Java new and C malloc)
o {} takes the next parameter
@ Output is hello, world again
@ The memory for an object can be deallocated with the function drop

@ The drop function is called automatically when reaching the }

Lecture 7 2023 27 /49

jonasskeppstedt.net

class a {

public static void main(Stringl[] args)

{
String s = new String("hello, world");
String t = s;
System.out.println(t) ;

}

+

@ Only one string object

e Garbage collection takes care of the memory for the string object, of
course

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 28 /49

jonasskeppstedt.net

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()

{
charx S;
int n;

n =1+ strlen("hello");

s = malloc(n);

strcpy(s, "hello");
printf ("%s\n", s);

free(s);

Jonas Skeppstedt (jonasskeppstedt.net)

Lecture 7

2023

29 / 49

jonasskeppstedt.net

An error in C

int main()

{

charx S;
char* t;
int n;

n =1+ strlen("hello");

s = malloc(n);

strcpy(s, "hello");

t = s;

printf ("%s\n", t);

free(s);

free(t); // disaster will follow

Jonas Skeppstedt (jonasskeppstedt.net)

Lecture 7

2023

30 /49

jonasskeppstedt.net

Rust heap objects

@ Java's garbage collection can be slow

@ It can be bad if it occurs at the wrong moment (e.g. when emergency
landing an airplane)

@ The C explicit allocation and deallocation is fine if you are careful

@ Rust has no garbage collection like Java but strict rules about how
pointers can be used

@ A purpose with Rust is to be fast systems programming language
without the headaches of C (their interpretation)

@ Or, (my interpretation) a new Gulag without the freedom of C

@ It is interesting to study, though, and has many nice ideas

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 31/49

jonasskeppstedt.net

Karl Rikte's MSc thesis from 2018

https://lup.lub.lu.se/student-papers/search/publication/8938297

Rust upholds the safety and zero-cost claims. Using Rust has been found to
aid in achieving an improved, shorter, more expressive architecture. The
learning curve is a bit steep, but productivity has been found to be high
once learned. Tooling support is mature, but IDEs are not yet full featured.

Jonas Skeppstedt (jonasskeppstedt.net)

Lecture 7 2023 32/49

jonasskeppstedt.net

Moving objects

fn main()

{
let s = String::from("world");
let t = s;
println! ("hello, {}", t);

by

@ Similar to the Java program and no complaints
@ The variable s becomes useless however
@ The string object has been moved to t which owns it from the =

@ Only one owner at a timel

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023

33/49

jonasskeppstedt.net

Using a moved object

fn main()

{

let s = String::from("world");

let t = s;

println! ("hello, {}", s);

error [E0382] : borrow of moved value:

--> a.rs:b5:31

(€

S

3 | let s = String::from("world");

| - move occurs because

4 let t = s;
- value moved here

¢

S

¢

5 println! ("hello, {}", s);

Jonas Skeppstedt (jonasskeppstedt.net)

- value borrowed here after

Lecture 7

”~

move

2023

has type ‘std::string::String‘,
which does not implement the ‘Copy‘ trait

34 /49

jonasskeppstedt.net

Clone

fn main()

{
let s = String::from("world");

let t = s.clone();
println! ("hello, {}", s);
+

@ This works but gets complaint about unused variable t

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 35/49

jonasskeppstedt.net

Function call

fn f(t: String) { }

fn main()

{
let s = String::from("world");

f(s);
println! ("hello, {}", s);

+

@ Also invalid since the call also moves the string

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 36 /49

jonasskeppstedt.net

Returning a value

fn f(s: String) -> String

{
S
by
fn main()
{
let s = String::from("world");
s = £(s);
println! ("hello, {}", s);
+

@ Ownership can be returned from a function

e Still wrong though: cannot assign to s twice (but see mut below)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023

37 / 49

jonasskeppstedt.net

fn f(s: String) -> String

{
S
b
fn main()
{
let s = String::from("world");
let t = £(s);
println! ("hello, {}", t);
by

@ Now correct

@ But we may want to modify s instead of introducing t

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7

2023

38 /49

jonasskeppstedt.net

References

fn f(s: &String, t: &String, u: &String)

{

¥

fn main()

{
let s = String::from("world");
f(&s, &s, &s);
println! ("hello, {}", s);

+

e Safe to give away references to s (even multiple)
@ Keep ownership using &

e fis not allowed to modify s

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7

2023

39 /49

jonasskeppstedt.net

Mutable object reference

fn f(s: &mut String)

{
s.push_str(" with some added text");
+
fn main()
{
let mut s = String::from("world");
f (&mut s);
println! ("hello, {}", s);
+

@ Declare mutable to allow modification

@ Only one reference can borrow an object at a time when mutable

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 40 / 49

jonasskeppstedt.net

use std::thread;

fn main() {
let h = thread::spawn(|| {
println! ("thread");

1)

h.join() .unwrap();
println! ("main") ;
+
@ Create a thread with spawn
e Wait for it with join

@ unwrap means controlled exit if something is wrong

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7

2023

41 / 49

jonasskeppstedt.net

use std::thread;
use std::sync::mpsc; // multi—producer single—consumer

fn main() {
let (tx, rx) = mpsc::channel();

thread: :spawn(move || {
let val = String::from("hi");
tx.send(val) .unwrap();

1)

let received = rx.recv().unwrap();
println! ("got {}", received);
}

@ The send moves val from sender to receiver

@ Note the move near spawn — see next slide

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023

42 / 49

jonasskeppstedt.net

Send moves objects

@ Since the new thread accesses data created in the main thread, it
needs to own that data

@ With move all data accessed by the new thread is moved to it
@ If main also would try to use tx we get a compiler error:

error [E0382] : borrow of moved value: ‘tx°

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 43 / 49

jonasskeppstedt.net

use std::sync::Mutex;

fn main() {
let m = Mutex: :new(129);

let mut val = m.lock() .unwrap();
xval = 124;

println! ("{:?}", m);
t
@ The mutex protects an integer with value 129
@ The variable val is a mutable reference to that integer
@ Use :7 to print the mutex
@ What is printed?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 44 / 49

jonasskeppstedt.net

Mutex { data: <locked> }

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 45 / 49

jonasskeppstedt.net

Unlocked

use std::sync::Mutex;

fn main() {
let m = Mutex: :new(129);

let mut val = m.lock() .unwrap();
xval = 124,
}

println! ("{:?7}", m);
t
@ The mutex is unlocked automatically when val goes out of scope

@ Now it prints:
Mutex { data: 124 }

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 46 / 49

jonasskeppstedt.net

First attempt

use std::sync::Mutex;

use std::thread;

fn main() {
let m =

thread::

1)

println!

}

@ No: main has given

Jonas Skeppstedt (jonasskeppstedt.net)

Mutex: :new(129) ;

spawn (move || {

let mut val = m.lock() .unwrap();
xval = 124;

(n{:?}n’ m);

away the mutex

Lecture 7 2023

47 / 49

jonasskeppstedt.net

Atomic reference counters

use std::sync::{Mutex,Arc};
use std::thread;

fn main() {
let m = Arc::new(Mutex: :new(129));
let ¢ = Arc::clone(&m);

let h = thread::spawn(move || {
let mut val = c.lock() .unwrap();
xval = 124;

s

h.join() .unwrap() ;
println! ("{:7}", m);
by

@ Arc = atomic reference counter

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023

48 / 49

jonasskeppstedt.net

Keeping track of threads

use std::sync::{Mutex,Arc};
use std::thread;

fn main() {
let m = Arc::new(Mutex: :new(100));
let mut a = vec![];

for in 0..2 {

let ¢ = Arc::clone(&m);

let h = thread::spawn(move || {
let mut val = c.lock() .unwrap();
*val = *xval + 1;

s

a.push(h);

}

for h in a {
h.join() .unwrap() ;
+

println! ("{:?}", m);

@ A reference counter is a "smart pointer’ (from C++) which knows
how many pointers point to some data

@ The Arcis an atomic reference counter for the same mutex

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 7 2023 49 / 49

jonasskeppstedt.net

