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C18

The current ISO C Standard is C18 and is essentially the same as C11
from December 2011.
See http://www.open-std.org/jtc1/sc22/wg14
C11 contains various news but we will focus on three in this course:

Section 5.1.2.4 Multi-threaded executions and data races
<threads.h> — similar to Pthreads
<stdatomic.h> — types, operators, and functions for atomic objects
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Atomic objects

Atomic objects were introduced in C11.
Atomic objects can safely be accessed without locking:

_Atomic int counter = 0;

Thread 1 Thread 2
counter++; counter++;

Of course, you may need locks for other reasons to protect your data.
Atomic objects have a global modification order and all threads see
the same modification order.
There is no total modification order of all atomic objects — different
threads can see the stores to different atomic objects in different
orders.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 6 2023 3 / 69

jonasskeppstedt.net


Syntax for declaring atomic objects

A new type qualifier: _Atomic.
The other type qualifiers are: const, volatile, restrict.
Examples:

_Atomic int a; // atomic int
int* _Atomic b; // atomic pointer
_Atomic int* c; // pointer to atomic int
_Atomic int* _Atomic d; // atomic pointer to atomic int
_Atomic struct { int d; } e; // atomic struct

In C++ it’s written as atomic<int> a.
For easier porting C allows: _Atomic (type-name)
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Using atomic objects

Members of an atomic struct/union may not be accessed individually.
The whole struct must first be copied to a non-atomic variable of
compatible type.
The ++, --, and compound assignment operators (e.g. +=) are atomic
read-modify-write operations.
The memory ordering when using these operators is sequential
consistency, which means costly instructions are needed (the CPU
needs to wait).
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Standard atomic data types in <stdatomic.h>

<stdatomic.h> defines basic atomic types including

atomic_char atomic_schar atomic_uchar
atomic_short atomic_sshort atomic_ushort
atomic_int atomic_sint atomic_uint
atomic_long atomic_slong atomic_ulong
atomic_llong atomic_sllong atomic_ullong
atomic_wchar_t atomic_intptr_t atomic_uintptr_t
atomic_address atomic_bool atomic_flag

atomic_flag is a lock-free struct.
On POWER its size is one byte.
The other types may be implemented with locks (and be slower).
An atomic flag can be initialized with ATOMIC_FLAG_INIT.
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Lock free property

To know whether the other basic atomic types are lock free, the
following macros can be evaluated:

ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_ADDRESS_LOCK_FREE

If for example ATOMIC_INT_LOCK_FREE is true then both
_Atomic signed int and _Atomic unsigned int are lock-free.
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Initializing an atomic object

A scalar type is any data not an array, struct (or union), which are
aggregate types.
Initializing some scalar variables:

_Atomic int a = 1;
static _Atomic float b; // w i l l be zero
static _Atomic int* c; // w i l l be NULL

To initialize a struct or union, use atomic_init

node_t d;
_Atomic node_t e;

atomic_init(&e, d);

C18 made the C11 macro ATOMIC_VAR_INIT obsolete and it may be
removed from a future ISO C standard.
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Memory order for atomic operations

The enumerated type memory_order contains the enumerators

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

They are used with the functions operating on atomic objects
described next.
For example:

x = atomic_load_explicit(&a, memory_order_relaxed);
y = atomic_load(&b);

Without _explicit, memory_order_seq_cst is used.
As we will see in detail the code may become faster and more
confusing with memory_order_relaxed.
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Quiz

Consider the code where all variables initially are zero.
// Thread 1
x = atomic_load_explicit(&b, memory_order_relaxed);
atomic_store_explicit(&a, x, memory_order_relaxed);

// Thread 2
y = atomic_load_explicit(&a, memory_order_relaxed);
atomic_store_explicit(&b, 42, memory_order_relaxed);

Can both x and y become 42?
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Answer: yes

The code may execute in the following order:
atomic_store_explicit(&b, 42, memory_order_relaxed); // Thread 2
x = atomic_load_explicit(&b, memory_order_relaxed); // Thread 1
atomic_store_explicit(&a, x, memory_order_relaxed); // Thread 1
y = atomic_load_explicit(&a, memory_order_relaxed); // Thread 2

With relaxed memory ordering and no dependency the store can be
reordered and execute first.
There is a dependency through the variable x between the accesses by
Thread 1 — so they may not be reordered, luckily.
We will see more about dependences below.
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Atomic exchange functions

A refers to an atomic type.
C refers to the corresponding non-atomic type.
The atomic exchange function writes a new value and returns the old
value pointed to by ptr.
C atomic_exchange_explicit(volatile A* ptr, C value, memory_order order);

C atomic_exchange(volatile A* ptr, C value);

typedef struct {
int e;
int h;

} node_t;

_Atomic node_t a;
node_t b;
node_t c;

c = atomic_exchange(&a, b, memory_order_relaxed);

gcc file.c -latomic (which looks for symbols in the atomic library)
For a small type the function may be optimized away and -latomic
would not be needed (but safer to use it)
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Atomic compare and exchange

There are two versions: strong and weak.
The weak may fail and must therefore be used in a loop.
The functions compare the value at the location pointed to by ptr
with an expected value and if they are equal writes a new value.
The result of the comparison is returned.
If the values are not equal, the current value is copied to expected, or
actually to where the pointer expected points.
The strong functions behave as:

if (*ptr == *expected)
*ptr = value;

else
*expected = *ptr;
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Atomic compare and exchange function prototypes

bool atomic_compare_exchange_strong_explicit(
volatile A* ptr,
C* expected,
C value,
memory_order success,
memory_order failure);

bool atomic_compare_exchange_weak_explicit(
volatile A* ptr,
C* expected,
C value,
memory_order success,
memory_order failure);

bool atomic_compare_exchange_strong(
volatile A* ptr,
C* expected,
C value);

bool atomic_compare_exchange_weak(
volatile A* ptr,
C* expected,
C value);

For the explicit functions, memory is affected according to parameters
success and failure, depending on the result of the comparison.
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Weak compare and exchange functions

The weak compare and exchange functions may fail spuriously, which
means they fail to perform the compare and exchange and ”give up”.
If so, the return value is guaranteed to be false, and the current value
is not copied to what ptr points to.
The weak forms allow faster implementation on machines with
load-locked/load-linked/load-and-reserve/load-exclusive and store
conditional instructions — instead of atomic compare and exchange.
The load-locked type of instructions are described below but the idea
is to split the atomic operation into two instructions.
A processor P first performs a load-locked and then a store
conditional.
If a different processor Q performs a store between the load-locked
and store conditional made by P , then the store conditional made by
P fails.
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A spin lock

A spin lock has no waiting queue with sleeping threads
Assume 0 means free and 1 means locked

_Atomic int a;
int expected;
int value;

value = 1; // want to lock i t
do

expected = 0; // hope for unlocked
while (!atomic_compare_exchange_weak(&a, &expected, value));
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Atomic fetch and modify functions

These functions atomically read-compute-modify an atomic object.
computation C operator function
addition + atomic_fetch_add_explicit
subtraction - atomic_fetch_sub_explicit
or | atomic_fetch_or_explicit
xor ^ atomic_fetch_xor_explicit
and & atomic_fetch_and_explicit

Plus the usual non-explicit functions, for example:
C atomic_fetch_add(volatile A* ptr, M value); adds value
to what A points to.
If A is arithmetic then M is C and if it’s atomic_address then M is
ptr_diff_t.
The value of *ptr before the operation is returned.
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Test and set atomic flag

The type atomic_flag is the atomic type for the classic test-and-set
operation.

bool atomic_flag_test_and_set(
volatile atomic_flag* ptr);

bool atomic_flag_test_and_set_explicit(
volatile atomic_flag* ptr,
memory_order order);

These functions set the flag to one if it was zero.
If it already was one, it may be written again but that would be a bad
implementation due to cache effects if multiple processors are waiting
for the flag to be cleared.
The old value is returned.
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Clear atomic flag

void atomic_flag_clear(
volatile atomic_flag* ptr);

void atomic_flag_clear_explicit(
volatile atomic_flag* ptr,
memory_order order);

These functions clear the flag.
The order must be one of

memory_order_relaxed,
memory_order_release, or
memory_order_seq_cst.
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The C memory consistency model for non-atomic objects

Initially some in the standardization committee wanted to standardize
on sequential consistency.
Fortunately, C11 has standardized on a relaxed memory model for
non-atomic objects.
This is partly based on input from Linux kernel developers at IBM.
Thus, to make an assignment visible to another thread requires
synchronization between the writing and reading threads.
There are three main kinds of synchronization and we will start with
mutex unlock/lock.
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Mutex unlock/lock

A mutex in C11 is called mtx_t or use Pthreads mutex.

int x;

Thread 1 Thread 2
mtx_lock(&m);
x = 1;
mtx_unlock(&m);

mtx_lock(&m);
printf("x = %d\n", x);
mtx_unlock(&m);

The unlock by Thread 1 and lock by Thread 2 make the write of x
visible to Thread 2.
A part of the mutex unlock is to perform a release operation and of
a mutex lock to perform an acquire operation.
The write by Thread 1 is said to happen before the read by Thread 2.
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Release and acquire, and consume

Recall, a release makes previous writes visible to other threads.
A release orders memory accesses so that no preceding write may be
moved to after the release by the compiler or hardware.
Recall an acquire makes writes by other threads that have made a
release visible.
An acquire orders memory accesses so that no subsequent read or
write may be moved to before the acquire.
A consume is similar to an acquire but it lets unrelated reads be
moved by the compiler to before the consume. In addition it can be
implemented faster on some machines including POWER.
Release/acquire is different from unlock/lock but unlock/lock perform
release/aqcuire in addition to keeping track of the lock variable.
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Conflicting expression evaluations

Two expression evaluations conflict if they access the same memory
location and at least one of them modifies that location.
For example:

// Thread 1 // Thread 2
a = b + c;

d = a + 1;

An assignment is an expression so the code above conflict.
By evaluation is meant that the expressions are computed at runtime.
Conflicting evaluations are necessary in parallel programs unless each
thread can work exclusively on its own data.
Conflicting evaluations become a big problem if they are not ordered
through the happens before relation.
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Synchronize with

It is the unlock/lock pair which guarantees that the write happens
before the read and that the data becomes visible to the other thread.
Since there is no synchronization in the previous slide there is a data
race, obviously.
An unlock of mutex m synchronizes with a lock of m.
Recall that mutex unlock/lock is one of three main kinds of
synchronizations which orders two variable accesses.
The other two are:

Release on an atomic object M followed by acquire or consume on M
Memory fences.

There are additional important details for atomic objects and fences
which we will see later.
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Summary so far

An essential property of parallel C programs is that we have ordered all
memory accesses through the happens before relation.
If you use mutexes to order the accesses, you will be safe.
Atomic objects and fences are intended for use when:

Mutexes don’t give sufficient performance.
You implement other high level synchronization primitives.
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Sequence point and sequenced before

The most common sequence point in C/C++ is semicolon.
Others include:

Function call
Comma operator
After evaluating the left operand of ?:, && and ||.

Below at L, the assignment to and use of v are not sequenced.

int u = 1, v = 2, w;

L: w = (v = u + 3) + v * 4;

It is legal C but the value of w can become either 12 or 20.
It is due to it is unspecified which operand of + is evaluated first.
In the following w becomes 16 since comma is a sequence point.

w = (v = u + 3), v * 4;

The assignment to v is sequenced before the use of v.
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Memory fences

These are also called memory barriers and are used frequently in the
Linux kernel.
A fence has no memory location operand.
A memory fence is one of:

release fence — wait until previous writes by the CPU have completed
acquire fence — wait until incoming invalidations have removed data
from the CPU’s cache
both release and acquire fence

Recall an invalidation request is replied to directly and queued for
being performed in typically multiple cache levels by a CPU/cache (L1
is smallest and e.g. L3 is largest)
Fences alone are insufficient and an atomic object must be used as well
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An example

_Atomic int m = 0; // both T1 and T2 know m is in i t ia l ly zero.
int u; // unknown value for T2 in i t ia l ly .
u = 42; // T1
atomic_thread_fence(memory_order_release); // T1 A
atomic_store_explicit(&m, 1, memory_order_relaxed); // T1 X

while (atomic_load_explicit(&m, memory_order_relaxed) == 0) // T2 Y
; // T2

atomic_thread_fence(memory_order_acquire); // T2 B
printf("u = %d\n", u); // T2

Accesses to atomic objects do not produce data races.
Simply running the two threads does not order them in any way.
Only if Thread 2 reads m after the write then it knows that the value
of u is correct.
The modification of u happens before the read of u.
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Synchronize-with using fences

A release fence A synchronizes with an acquire fence B if there exist
atomic operations X and Y which operate on an atomic object M and
X is sequenced after A,
Y is sequenced before B ,
Y reads a value written by X or the hypothetical release sequence
headed by X if it were a release.

u = 1
A: release fence
X: atomic store M relaxed

Y: atomic load M relaxed
B: acquire fence
print u

A and X can be replaced with a release operation on M.
Y and B can be replaced with an acquire operation on M.
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Wrong synchronize-with: release after atomic store

Thread 1 Thread 2
u = 1
X: atomic store M relaxed
A: release fence

Y: atomic load M relaxed
B: acquire fence
print u

Assignment to u and X can be reordered
Thread 2 can read M and perform B
Thread 2 can then read u
Then the invalidation of u can reach Thread 2
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Wrong synchronize-with: acquire before atomic load

Thread 1 Thread 2
u = 1
A: release fence
X: atomic store M relaxed

B: acquire fence
Y: atomic load M relaxed
print u

In Thread 2 reading u and Y can be reordered
B can have been executed before A
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Dependences for consume

So far: A synchronizes with B using
mutex unlock/lock, and
atomic variable possibly with fences

Dependences are intra-thread (within one thread only).
There are two kinds of dependences:

Data dependence — due to writing and reading a memory location.
Control dependence — due to branches such as if-statements.

Only data dependences are considered in C11.
As we will see, this can lead to unexpected results.
When we talk about ”dependences” from now on, we only mean data
dependences.
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Dependences between intra-thread evaluations

Consider two expression evaluations A and B made by one thread.
When we say that A carries a dependency to B it means A must be
evaluated before B :

v = u + 1; // A
w = v * 2; // B

The order of A and B should not be changed!
Both compilers and hardware must preserve this order — and they do.
A is sequenced before B since there is a sequence point between
A and B .
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Definition of dependency in C11

A carries a dependency to B if
the value of A is used as an operand of B, or
A writes a scalar object (pointer or arithmetic variable) or a bit-field in
memory location M and B reads from M the value written by A, and A
is sequenced before B
For some evaluation X , A carries a dependence to X and X carries a
dependency to B — for transitivity.

Carries a dependency is intra-thread.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 6 2023 34 / 69

jonasskeppstedt.net


Dependency-ordered

A release sequence is a maximal sequence of modifications of M
headed by a release operation on M and performed by that thread or
by other threads performing atomic read-modify-write accesses on M.
Recall, a consume operation is like an acquire except it allows more
optimizations on some machines, e.g. on the POWER it becomes an
ordinary load instruction.
An evaluation A in one thread is dependency ordered before an
evaluation B in another thread if:

A performs a release operation on an atomic object M and B performs
a consume operation on M and reads a value written by any side effect
of A in the release sequence of A, or
for some evaluation X , A is dependency ordered before X and X
carries a dependency to B (again, for transitivity).
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Inter-thread happens before

An evaluation A inter-thread happens before an evaluation B if:
A synchronizes with B (mutex unlock/lock, or release/acquire on
atomic variable), or
A is dependency ordered before B (release/consume), or
for some evaluation X :

A synchronizes with X and X is sequenced before B, or
A is sequenced before X and X synchronizes with B, or
A inter-thread happens before X and X inter-thread happens before B.

An evaluation A happens before an evaluation B if:
A is sequenced before B (intra-thread), or
A is inter-thread happens before B.

C11, Section 5.1.2.4 paragraph 25:
The execution of a program contains a data race if it contains two
conflicting actions in different threads, at least one of which is not
atomic, and neither happens before the other. Any such data race
results in undefined behavior.
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Motivation for dependency ordering

Improved performance!
In programs (such as the Linux kernel) with important data structures
which are rarely modified and very frequently read there exist faster
solutions than using full release/acquire synchronization on modern
architectures.
In this sense modern architectures include POWER, MIPS and ARM.
For other architectures including x86, optimizing compilers can make
better optimizations if dependency ordering is used rather than
release/acquire, as we will see below.
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Read-copy update

RCU is an alternative to readers-writers locks with the following
essential functionality:

Pointers to data structures are protected with RCU.
Readers use read-side critical sections marked by enter/exit calls.
When a reader is in such a section a writer may not modify the data
structure but instead modifies a copy of it.
When the last reader has left, the original data structure is updated.

RCU is heavily used in the Linux kernel.
RCU was one part of the SCO vs IBM lawsuit.
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A simplified example

Consider the following example code (originally from Linux)
list_t* head;
int b;

void insert(int a)
{

list_t* p = kmalloc(sizeof *p, GFP_KERNEL);

spin_lock(&m);
p->a = 1;
p->next = head;
rcu_assign_pointer(head, p);
spin_unlock(&m);

}

int f(void)
{

list_t* q = rcu_dereference(head);

return q->a + b;
}

The use of rcu_dereference() must be done within an
rcu_read_lock() / rcu_read_unlock() — not seen in this
example.
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A more detailed look

int b;

int f(void)
{

list_t* q = rcu_dereference(head);

return q->a + b;
}

Before the proposal for dependency ordering through release/consume,
the then current draft would require the use of an acquire operation in
the rcu_dereference.
Doing so prevents the compiler from loading b before the execution of
the rcu_dereference.
A standard for a high performance language must permit extensive
compiler optimization and efficient execution on modern machines.
C11 succeeds with this — also for multicores.
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More details about dependences

Recall the intra-thread A carries a dependency to B .
The compiler becomes responsible for not optimizing away such
dependences.
This might sound trivial but is not. See below.
A dependency is started with a consume operation:

p = atomic_load(q, memory_order_consume);
a = *p + b;

A root of a dependency tree is created with the consume, and the
memory read in *p becomes ordered, as we expect.
The compiler or hardware is not allowed to move the *p to before the
first line which would probably not make much sense, anyway.
Behaviour is as we want and expect.
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Constant propagation example 1(3)

Consider the following code and assume the compiler has deduced
size is one:

i = atomic_load(q, memory_order_consume);
a = b[i % size];

What happens if the compiler transforms the code to the following?

i = atomic_load(q, memory_order_consume);
a = *b;
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Constant propagation example 2(3)

There is now no dependence between the two statements!

i = atomic_load(q, memory_order_consume);
a = *b;

Without a dependence the reads are not ordered.
This is not what the programmer expected!!!
Therefore, optimizing C compilers must analyse all dependences
before any code transformation and preserve them.
What does ”preserve” mean, then?
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Constant propagation example 3(3)

Preserving the data dependency means letting the hardware know
about them.
That can be done in different ways for different processors.
One way is to insert instructions so that there will be a chain of
dependences for the processor pipeline to see.
Compilers thus must preserve such dependences in the complete
program!
Writing optimizing C compilers all of a sudden became twice as
interesting with C11
There is, however, a very simple first version implementation: treat all
memory_order_consume as memory_order_acquire which
automatically will order the memory accesses.
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One more data dependency

a = atomic_load(p, memory_order_consume);
atomic_store(q, a, memory_order_relaxed);
atomic_store(r, b, memory_order_relaxed);

Since there is no data dependency between the consume and the
second store, they are not ordered.
As programmers we need to be very careful about what we expect to
be ordered!
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Execution times

Implementation on a specific architecture: POWER.
Illustrations of what actually is ordered for several situations.
We will begin with the POWER synchronization instructions.
Approximate clock counts below are not fixed but depends on what is
happening in the machine at the moment.
Numbers from Christoph von Praun: ”Deconstructing Redundant
Memory Synchronization” (while at IBM Research).

mnemonic name POWER4 cycles POWER5 cycles
ldarw/stwxc. load and reserve / store conditional 80 75
hwsync or sync heavy weight sync 140 50
lwsync light weight sync 110 25
isync instruction sync 30 10
eieio enforce inorder execution of I/O not measured not measured

We want to use functions which use the less costly instructions!
Such as the consume operation which is only an ordinary load
instruction on POWER!
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Load and reserve/store conditional purpose

Some processors use atomic test-and-set instructions while others use
pairs of special load and store instructions.
Load and reserve is also called load-locked and load-linked.
In addition to POWER, it’s used by ARM and MIPS.
Test-and-set, or compare-and-swap, is used by e.g. x86.
The purpose with load-and-reserve/store conditional is to simplify the
design of the pipeline.
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Load and reserve/store conditional behaviour

The load instruction fetches data from a memory location, and makes
a reservation R in memory.
If a different processor modifies the same memory location, the
reservation R is lost.
If/when the processor with a reservation makes a conditional store,
the memory location is modified only if the reservation was not lost in
between.
Therefore it’s an atomic read-modify-write.
The stwcx. conditional store in POWER sets a condition code to
indicate whether the store succeeded or not (the dot in the mnemonic
indicates that the condition code is set by an operation on POWER).
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POWER memory barrier instructions

The POWER memory barrier instructions create a memory barrier
with two sets of instructions:

the A-set with instructions ai preceding the barrier, and
the B-set with instructions bj following the barrier.

Depending on which barrier instruction is used, some bj instructions
may be reordered with some ai instructions.
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hwsync memory barrier for sequential consistency

The A-set consists of all instructions preceding the hwsync.
The B-set consists of memory access instructions following the
hwsync.
Except for the instruction icbi which invalidates an instruction cache
block, no B-set instruction may be reordered with any A-set
instruction.
This is the most costly POWER synchronzation instruction.
Not only for cached data but for any storage.
It’s used e.g. to implement sequentially consistent write on POWER:

stwx r1,r2,r3
hwsync
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lwsync memory barrier for release operation

The A and B sets consist of all memory access instructions preceding
and following the lwsync, respectively.
Only the following pairs of ai , bj instructions are ordered:

A-side load → B-side load
A-side load → B-side store
A-side store → B-side store

Thus, A-side store → B-side load are not ordered.
The dcbz data cache block zero is counted as a store.
It’s used e.g. to implement a release:

stwx r1,r2,r3 # modify shared data...
stwx r4,r5,r6
...
stwx r29,r30,r31 # last write in critical section
lwsync
stwx r8,r9,r10 # set lock to free
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isync memory barrier for acquire operation

The A and B sets consist of all instructions preceding and following
the isync, respectively.
An instruction which cannot raise an exception in the pipeline can be
allowed to complete and instructions following the isync therefore
actually execute without order.
Consider the sequence:

ldw r1,r2,r3
isync
stw r4,r5,r6

The store may execute before the load if the load had e.g. a cache
miss.
This is not what we want and to overcome that problem we can
exploit that POWER does not permit speculative execution of store
instructions.
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bc;isync memory barrier for acquire operation

By inserting a conditional branch, bc, before the isync both the
isync and stw become speculative until the branch outcome is known.
We can use beq as follows:

ldw r1,r2,r3 # r1 = MEMORY[r2+r3]
cmp. r1,r1 # certainly true but the beq must
beq # wait according to the specification
isync # since no speculative stw is allowed.
stw r4,r5,r6

This memory barrier is the fastest.
Since the store may not execute speculatively it must wait for the
branch outcome.
It can guarantee that a set of load instructions (above only one load)
have completed before the fence is executed.
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eieio memory barrier

(unique five vowel instruction)
Enforce in order execution of I/O.
It only orders stores.
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Cumulative ordering

If the memory accesses ordered by a memory barrier executed by one
processor Pi also take into account memory accesses executed by
other processors as described below the barrier is cumulative.
By applicable storage accesses for a barrier is meant the storage
access which are ordered by that barrier.
Two rules:

The A-set also includes all applicable storage accesses made by other
processors which have completed with respect to Pi before the barrier
is started.
The B-set also includes all applicable accesses made by any processor
Pj after Pj has executed a load that returned a value stored by an
instruction in the B-set.

The next example will clarify this
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Example of cumulative ordering

// int a = b = 0;
// Thread 1 Thread 2 Thread 3
1:a = 1;
2:lwsync

3:x = a; // a == 1
4:y = b;
5:lwsync
6:b = 2;

7:x = b; // b == 2
8:lwsync
9:y = a; // a == 1

lwsync is cumulative
bc;isync is not
If Thread 2 reads 1 in access 3 and Thread 3 reads 2 in access 7 then
Thread 3 will read 1 in access 9.
Using instead bc;isync Thread 3 may read zero in access 9.
We should not expect this to work with only bc;isync/acquire.
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Implementation on POWER

The following is based on the ISO C/C++ standardization document
ISO/EIC JTC1 SC22 WG21 N2745 written by Paul E McKenney and
Raul Silvera from IBM.
There are other implementations possible.
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Load

Load relaxed ld
Load consume ld
Load acquire ld; cmp; bc; isync
Load seq cst hwsync;ld; cmp; bc; isync

1 Using sequential consistency on machines with relaxed memory models
makes it easier to write correct parallel code which will be slow.

2 Even if your code is safety critical (when people can die due to bugs)
and performance is not an issue, you should not use SC, use a single
threaded C program instead.
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Store

Store relaxed st
Store release lwsync;st
Store seq cst hwsync;st

1 It’s easier to program under sequential consistency!
2 Yes, but, why would you want to use synchronization instructions

before every store in a critical section since nobody should look at the
data before you have left the critical section anyway?

3 Write buffering permitted by stores in relaxed memory models
(C/Java) allows the machine to pipeline all the stores in the critical
section.

4 At the end of the critical section you use store release and wait for the
remaining preceding stores (now possibly waiting in a write buffer) to
complete (i.e. invalidate the other copies if there are any left).
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Memory fence

Acquire fence lwsync
Release fence lwsync
Acq rel fence lwsync
Seq cst fence hwsync

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 6 2023 60 / 69

jonasskeppstedt.net


Spin lock on POWER

# lock
loop: lwarx r6,0,r3 # load lock and reserve

cmpw r4,r6 # r4 values means unlocked
bne- loop # restart if locked.
stwcx. r5,0,r3 # try to store
bne loop # restart if store failed.
isync # store succeeded.
lwzx r7,r8,r9 # first load of shared data

# unlock
stwx r7,r8,r10 # last store of shared data
lwsync # export shared data
stw r4,0,r3 # unlock the lock. same r4 as above.
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<threads.h> Header File

C11 threads are similar to but simpler than Pthreads.
thrd_t — thread type
once_flag — a type for performing initializations exactly one time
mtx_t — mutex type
cnd_t — condition variable type
tss_t — thread specific storage (not the same as _Thread_local)

_Thread_local int x; // keyword
thread_local int y; // available when including <threads.h>
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Initialization function

void call_once(once_flag* flag, void (*func)(void));

The flag should be initialized with:

once_flag flag = ONCE_FLAG_INIT;

If multiple threads invoke call_once with the same flag, the function
will only be called one time, and the others will wait until the call to
func returns.
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Thread enumeration constant error codes

thrd_success — indicates an operation succeeded.
thrd_error — indicates an operation failed but not why.
thrd_busy — an operation failed due to a resource was already in use.
thrd_nomem — an operation failed due to memory allocation failed.
thrd_timeout — a timed wait operation timed out.
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Mutex options for mtx_init function

mtx_plain — the mutex should support none of below options.
mtx_recursive — set mutex to support recursive locking.
mtx_timed — set mutex to support timed wait.
mtx_try — set mutex to support test and return.
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Specifying waiting time

The struct xtime contains at least the following members.
time_t sec;

long nsec;

They may be declared in any order in the struct.
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Condition variable functions

int cnd_init(cnd_t* cond);
void cnd_destroy(cnd_t* cond);
int cnd_signal(cnd_t* cond);
int cnd_broadcast(cnd_t* cond);
int cnd_wait(cnd_t* cond, mtx_t* mtx);
int cnd_timedwait(cnd_t* cond, mtx_t* mtx, const xtime* xt);

These functions are all similar to the corresponding Pthreads
functions, except that Pthread condition variables can have certain
attributes and be statically initialized.

int pthread_cond_init(
pthread_cond_t* restrict cond,
const pthread_condattr_t* restrict attr);

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
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Mutex functions

int mtx_init(mtx_t* mtx, int type);
void mtx_destroy(mtx_t* mtx);
int mtx_lock(mtx_t* mtx);
int mtx_timedlock(mtx_t* mtx, const xtime* xt);
int mtx_trylock(mtx_t* mtx);
int mtx_unlock(mtx_t* mtx);

The type should be one of:

mtx_plain
mtx_timed
mtx_try
mtx_plain | mtx_recursive
mtx_timed | mtx_recursive
mtx_try | mtx_recursive

Only mtx_trylock can return thrd_busy.
A prior call to mtx_unlock synchronizes with a successful call to a
mtx_lock function.
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Thread functions

int thrd_create(thrd_t* thr, int (*func)(void*), void* arg);
void thrd_exit(int res);
int thrd_join(thrd_t thr, int* res);
int thrd_detach(thrd_t thr);
thrd_t thrd_current(void);
int thrd_equal(thrd_t u, thrd_t v);
void thrd_sleep(const xtime* xt);
void thrd_yield(void);
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