
The Multicore Programming Course in Lund

Welcome to the Multicore Programming course in Lund
12 lectures and 6 labs
You will implement the preflow-push algorithm with different methods
of exploiting multicore hardware:

1 Lab 1: Scala with actors
2 Lab 2: Java and C with locks
3 Lab 3: C with barriers
4 Lab 4: C with atomic variables
5 Lab 5: Rust
6 Lab 6: Clojure and C with transactional memory

At forsete.cs.lth.se you will upload your source code and see a
highscore list
The ten first are shown with stilid and after ten no stilid

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 1 / 33

jonasskeppstedt.net


Purpose of the course

To learn how to write fast parallel programs on common hardware
Understand pros and cons of different approaches to parallelizing an
algorithm
Understand that language differences for performance mostly is a
matter of different syntax — what is important is how we compute
and move data around in the machine
But some languages result in more work for the computer when doing
essentially the same thing
Understand which languages make it easier to have a fast and bug free
program
Get a good skepticism against overly hyped new things including new
hardware which requires new languages

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 2 / 33

jonasskeppstedt.net


Administration

Lecturer is Jonas.Skeppstedt@cs.lth.se with office E:2190
Course web page cs.lth.se/edan26

You can do labs either in E:Venus or on Discord
Book a time to ask questions and oral exam at
calendly.com/forsete

Or ask questions at Discord — and it is nice if you help others there
Course files can be found with link to tresorit.com (see email)
Email me your stilid if you have not already an account at
power.cs.lth.se or forsete.cs.lth.se
Each core in power has up to 8 hardware threads
You can work on other machines if you wish but performance
measurements are to be done on it.
You can login with ssh stilid@power.cs.lth.se and to forsete
with ssh from power

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 3 / 33

jonasskeppstedt.net


Lectures

F1 Introduction to multicore programming
F2 High-level parallel programming: Scala on the JVM
F3 Java and POSIX Threads details
F4 Multicore architectures
F5 Memory consistency models
F6 Threads and the memory model in C/C++ and Java
F7 OpenMP for C/C++, and Rust
F8 Transactional memory in Clojure and C
F9 Cache aware programming for multicores

F10 Parallelizing compilers
F11 Hardware accelerators
F12 Research trends

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 4 / 33

jonasskeppstedt.net


Introduction to Multicore Programming

Contents of Lecture 1
The preflow-push algorithm
Advantages with multithreading

Performance
Sometimes simpler programming

Disadvantages with multithreading
Overhead
Usually more complex programming

Two tools to help us avoid threading errors

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 5 / 33

jonasskeppstedt.net


A flow network

The maximum flow problem
The Ford-Fulkerson algorithm
The preflow-push maximum flow algorithm

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 6 / 33

jonasskeppstedt.net


A flow network

A graph G (V ,E ) — directed or undirected — we will use undirected
Each edge e ∈ E has a nonnegative capacity c(e)

A source node s ∈ V with no incoming flow
A sink node t ∈ V with no outgoing flow
An example:

s

v2 v4

v1 v3 v5

v6

t

3

8

9

4

4

2 5 5

3

3

3

4

9

The flow on an edge can be up to the capacity and in either direction
We want to have as much flow as possible from s to t

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 7 / 33

jonasskeppstedt.net


Flow conservation constraint

The flow coming in to a vertex v must equal the flow going out from v

This flow conservation constraint does not apply to the source s
and the sink t

v ∈ V − {s, t} :
∑

e in to v

f (e) =
∑

e out from v

f (e)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 8 / 33

jonasskeppstedt.net


The maximum flow problem

The value of a flow f is
∑

e out from s

f (e)

The maximum flow problem is to find a flow f with maximum value

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 9 / 33

jonasskeppstedt.net


The Ford-Fulkerson algorithm: overview

The basic idea is very simple
1 Start with a flow f (e) = 0 for every e ∈ E
2 Look for a simple path p from s to t such that on every edge (u, v) in

p we can increase the flow in the direction from u to v
3 If we could not find any such path, we have found the maximum flow
4 Let each edge e = (u, v) on p have a value δ(e), which means room

for improvement, or how much we can increase the flow on that edge
5 Let ∆ be the minimum of all δ(e) on p
6 Increase the flow by ∆ along the path p
7 goto 2

Sometimes one selected path can block later paths so we need to be
able to reduce the flow on edges as well.
Reducing flow can be done with a so called residual graph, and if you
have not taken EDAF05, you can learn more about it there.
Ford-Fulkerson has not been easy to parallelize since it finds one s-t
path at a time and parallel path finding is difficult to make fast.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 10 / 33

jonasskeppstedt.net


The preflow-push maximum network flow algorithm

Usually the fastest algorithm for maxflow
Instead of maintaining a valid flow which satisfies both the
conservation constraint and the capacity constraint, it uses a weaker
type of flow which only satisfies the capacity constraint
The weaker flow is called a preflow
At algorithm termination, the preflow will have become a valid flow
In addition, it uses a height function for each node
It also uses the residual graph but you can actually ignore that
See EDAF05 if you want to learn why preflow-push works
The algorithm itself is really simple but why it works is more subtle
but it is intuitive anyway :-)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 11 / 33

jonasskeppstedt.net


The preflow

For each edge e ∈ E we have 0 ≤ f (e) ≤ c(e)

Thus the capacity constraint is always satisfied
Instead of the conservation constraint, a node u ̸= s is allowed to have
more incoming flow than outgoing
Thus for each node u ∈ V − {s} we have

∑
e into u

f (e) ≥
∑

e out from u

f (e)

The excess preflow of a node u is

ef (u) =
∑

e into u

f (e)−
∑

e out from u

f (e)

Only s has a negative excess preflow
Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 12 / 33

jonasskeppstedt.net


The height function

There is a height function h : V → N
h(s) = n

h(t) = 0
A node u can only push flow to a node v if h(u) > h(v)

For s and t the heights cannot change and for other nodes they start
at 0 and can increase
0 ≤ h(u) ≤ 2n − 1 for u /∈ {s, t}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 13 / 33

jonasskeppstedt.net


push

Three conditions must be satisfied for a push:
1 ef (v) > 0
2 h(v) > h(w)
3 (v ,w) ∈ Gf this simply means there is more capacity to use on that

edge in the direction from v to w

procedure push (f , h, v ,w)
assert ef (v) > 0 and h(v) > h(w) and (v ,w) ∈ Gf

e ← (v ,w)
δ ← min(ef (v), c(e)− f (e))
increase f (e) by δ

This is somewhat simplified since we have to consider if the current
flow goes from v to w or from w to v . A flow from v to w can be
represented as positive and from w to v can be as negative.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 14 / 33

jonasskeppstedt.net


relabel

The purpose of a relabel is to increase the height of a node
It is done when the node has excess flow but nowhere to push it due
to neighbors have too big height

procedure relabel (f , h, v)
assert ef (v) > 0
h(v)← h(v) + 1

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 15 / 33

jonasskeppstedt.net


The preflow push algorithm

function preflow_push (G , s, t)
h(s)← n
for each node u ̸= s do h(u)← 0
for each edge (s, v) do f (s, v)← c(s, v)
for each edge (u, v) such that u ̸= s do f (u, v)← 0
while there is a node v ̸= t with ef (v) > 0 do

if there is a node w such that h(v) > h(w) and (v ,w) ∈ Gf then
push(h, f , v ,w)

else
relabel(h, f , v)

return f

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 16 / 33

jonasskeppstedt.net


Lab 0

Now you may want to check out lab 0 with a sequential
implementation of preflow push
The source is in Tresorit
You can set PRINT to one in it to get output saying what is happening
This can be a useful reference for debugging your programs

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 17 / 33

jonasskeppstedt.net


What makes it easy to parallelize preflow-push

We can work on every node and edge concurrently
Of course some locking may be needed
No sequential loop as in Ford-Fulkerson
Consider an edge between v and w . Both cannot change it at the
same time since only the higher one can push
Of course h(v) and h(w) can change in the future

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 18 / 33

jonasskeppstedt.net


What makes it difficult to parallelize preflow-push

The amount of work in a push or relabel is really not much
Somehow we must make sure two threads do not work on the same
node or edge
There is a huge risk of slowing down the program due to overhead of
managing the threads

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 19 / 33

jonasskeppstedt.net


Multicore Programming

Parallel programming is much more fun than sequential programming!
It’s very nice to see many threads speeding up our code :-)
The computer industry revolution to make parallel computing
widespread has already happened and we need to learn this

More accurate and/or faster research results when solving big problems
(medicine, climate, products,...)
Fun to know how your computer really works
Good to know advantages/disadvantages of different languages
Easier to sell products which are faster than the competition

In the 1990’s researchers in industry and academia came to a
consensus on how to build ”easily” programmable parallel machines.
What do such machines cost?
The price of a phone, laptop or a desktop.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 20 / 33

jonasskeppstedt.net


More expensive machines

Our power.cs.lth.se cost about USD 11000 new in 2016
We bought it from ebay.de for EUR 299
It can have 14 disks and 1 TB RAM but has 16 GB RAM
Large scale servers cost much more of course

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 21 / 33

jonasskeppstedt.net


Machines for multithreaded Java, C, C++

These machines are called cache coherent shared memory
multiprocessors, and are also often called multicores.
Multicore actually means a machine with multiple processors, which
do not necessarily have private cache memories.
Obviously, just because we have multiple processors our program does
not become faster automatically.
We need to divide it into threads which can compute partial results.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 22 / 33

jonasskeppstedt.net


Potential Sources of Troubles in Multicore Programming

What can go wrong in this process?
Amdahl’s Law: limited speedup if we cannot find enough parallel
tasks the threads can work on.
Multiple threads modify the same data concurrently and corrupt the
result, ie we have created data races.
Threads wait for each other in a circular way and we have a deadlock.
Our program becomes slower than we hoped for because the memory
access penalty is much longer and we failed to exploit the cache
memories.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 23 / 33

jonasskeppstedt.net


Amdahl’s Law

Assume a sequential program has an execution time 1 time units, and
a fraction P can be parallelized.
What is the maximum speedup with N processors?
Speedup S = Tslow

Tfast

Speedup SN = 1
(1−P)+P/N

Assume P = 0.9
N S
2 1.8
3 2.5
4 3.1
10 5.3
100 9.2
∞ 10

Parallel programming is interesting only for sufficiently large P!

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 24 / 33

jonasskeppstedt.net


Data Races

count += 1;

If two or more threads can modify a variable concurrently there is a
data race and the final value written to memory is not predictable.
It would have been predictable if += was implemented as an atomic
instruction which modified a certain memory location but it’s not.
Both Google sanitizer and Valgrind can detect threading problems.
In ISO C/C++ data races are undefined behavior (= very serious
programmer bugs).
To avoid data races we need to assure that only one thread can
modify the data in a critical region which are typically created with
some form of a lock. In Pthreads we can write:

pthread_mutex_lock(L);
count += 1;
pthread_mutex_unlock(L);

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 25 / 33

jonasskeppstedt.net


Locks

A lock is a data structure (possibly as simple as only an integer
variable) which only one thread at a time can hold, like a unique door
key.
There are at least two operations:

Acquire the lock. In Pthreads this function is called
pthread_mutex_lock and it takes a pointer to a pthread_mutex_t
as parameter. If some other thread already has taken the lock the
second must wait.
Release the lock. In Pthreads this function is called
pthread_mutex_unlock and it also takes a pointer to a
pthread_mutex_t as parameter.

In Pthreads it is also possible to see if the lock is currently free and
only take it then while cancel the operation if the lock is taken in
order to avoid waiting. It is called pthread_mutex_trylock.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 26 / 33

jonasskeppstedt.net


Using Locks

Thus, locks are used to protect data so that only one thread at a time
can modify it in a critical region.
Locks are thus used to achieve mutual exclusion which means that
only one thread can do something with some data at a time.
In Java, every object has such a lock, called a mutex, which is used
with synchronized blocks or methods.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 27 / 33

jonasskeppstedt.net


Let us try Helgrind!

Let us run a program with a data race to see what Helgrind tells us!
Without going into details the program increments a counter outside
any critical region.
We run it with 10 threads as follows:
$ gcc -g datarace.c -lpthread
$ valgrind --tool=helgrind a.out 10

==14599== Possible data race during read of size 4 at 0x10011130 by thread #3
==14599== at 0x10000900: work (datarace.c:67)
==14599== by 0xFF6DB63: mythread_wrapper (hg_intercepts.c:201)
==14599== by 0xFDB64F7: start_thread (in /lib/libpthread-2.11.2.so)
==14599== by 0x60B3FDF: clone (in /lib/libc-2.11.2.so)
==14599== This conflicts with a previous write of size 4 by thread #2
==14599== at 0x10000910: work (datarace.c:67)
==14599== by 0xFF6DB63: mythread_wrapper (hg_intercepts.c:201)
==14599== by 0xFDB64F7: start_thread (in /lib/libpthread-2.11.2.so)
==14599== by 0x60B3FDF: clone (in /lib/libc-2.11.2.so)

Such messages can be invaluable.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 28 / 33

jonasskeppstedt.net


Deadlocks

A deadlock occurs when threads wait for each other in a circular way
so that none can proceed.
There are four requirements that all must hold for a deadlock to exist:

1 Mutual exclusion, i.e. only one thread can use a resource R at a time.
2 No preemption, i.e. it’s not possible to take away the resource from a

thread which currently holds it.
3 Hold and wait, a thread which holds a resource R1 may request

another resource R2 which may currently be held by another thread.
4 There must be a circular wait, e.g. T1 waiting for T2 and T2 waiting

for T1.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 29 / 33

jonasskeppstedt.net


How can we prevent deadlocks in our programs?

Mutual exclusion and no preemption may be difficult to avoid in
general.
In some cases we can, however, permit only one thread modifying
some data, or multiple threads reading that data. This is called a
read-write lock.
To avoid hold-and-wait, we can use the pthread_mutex_trylock if it
makes sense in our program.
To avoid the circular wait, we can have rules which specify the order in
which multiple locks may be acquired. If all threads follow these rules,
there cannot be any circular wait.
Helgrind does not detect deadlocks but it actually detects something
better.
What could be better than pointing out deadlocks?
See below but first an unpleasant realization

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 30 / 33

jonasskeppstedt.net


Non-Deterministic Execution

One very important (and sometimes unpleasant) aspect of parallel
programming is that execution normally is not deterministic.
A deadlock might happen in one of 1,000,000 executions so testing as
for sequential programs is not sufficient.
By observing the order in which the threads acquire the different
locks, one can check if the programmer had no rule for which order
should be used.
How can we observe that?

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 31 / 33

jonasskeppstedt.net


Helgrind and Deadlocks 1(2)

So: Helgrind does not detect deadlocks but does something much
more useful.
Helgrind observes the lock-acquire order and complains when two
threads acquire certain locks in an inconsistent order.
void* work(void* p)
{

arg_t* arg = p;

if (arg->i == 0) {
pthread_mutex_lock(&A);
pthread_mutex_lock(&B);

printf("got both!\n");

pthread_mutex_unlock(&B);
pthread_mutex_unlock(&A);

} else {
pthread_mutex_lock(&B);
pthread_mutex_lock(&A);

printf("got both!\n");

pthread_mutex_unlock(&A);
pthread_mutex_unlock(&B);

}

return NULL;
}

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 32 / 33

jonasskeppstedt.net


Helgrind and Deadlocks 2(2)

There is only a small probability that there will be a deadlock when
running the program since the threads are started one at a time and
the first most likely finishes before the second is even started.
Helgrind reports the following, however:

==17471== Thread #3: lock order "0x100112AC before 0x100112C4" violated
==17471== at 0xFF69288: pthread_mutex_lock (hg_intercepts.c:464)
==17471== by 0x10000A13: work (deadlock.c:84)
==17471== by 0xFF6DB63: mythread_wrapper (hg_intercepts.c:201)
==17471== by 0xFDB64F7: start_thread (in /lib/libpthread-2.11.2.so)
==17471== by 0x60B3FDF: clone (in /lib/libc-2.11.2.so)
==17471== Required order was established by acquisition of lock at 0x100112AC
==17471== at 0xFF69288: pthread_mutex_lock (hg_intercepts.c:464)
==17471== by 0x100009C7: work (deadlock.c:71)
==17471== by 0xFF6DB63: mythread_wrapper (hg_intercepts.c:201)
==17471== by 0xFDB64F7: start_thread (in /lib/libpthread-2.11.2.so)
==17471== by 0x60B3FDF: clone (in /lib/libc-2.11.2.so)
==17471== followed by a later acquisition of lock at 0x100112C4
==17471== at 0xFF69288: pthread_mutex_lock (hg_intercepts.c:464)
==17471== by 0x100009D3: work (deadlock.c:74)
==17471== by 0xFF6DB63: mythread_wrapper (hg_intercepts.c:201)
==17471== by 0xFDB64F7: start_thread (in /lib/libpthread-2.11.2.so)
==17471== by 0x60B3FDF: clone (in /lib/libc-2.11.2.so)
==17471==

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 1 2023 33 / 33

jonasskeppstedt.net

