
EDAN20
Final Examination

Pierre Nugues

October 29, 2019

The examination is worth 240 points. The distribution of points is indicated
with the questions. You need 40% to have a mark of 4 and 70% to have a 5.

1 Closed Book Part: Questions
In this part, no document is allowed. It is worth 120 points.

Chapter 1. Cite three applications that use natural language processing to
some extent. 3 points

Chapter 1. Annotate each word of the sentence below with its part of speech:

US companies battle for control of 5G spectrum1

You will use parts of speech you learned at school: common noun, proper
noun, verb, or preposition. There are five nouns, two prepositions, and
one verb. In this sentence, you will consider that battle is a verb. 3 points

Chapter 1. Annotate each group (chunk) in the sentence:

US companies battle for control of 5G spectrum

with its type, either verb group (VP), noun group (NP), or prepositional
group (PP). To annotate a group, draw a box around it and mark its type
with either VP, NP, or PP. There are one verb group, three noun groups,
and two prepositional groups. Each prepositional group consists of one
single word: The preposition. 4 points

Chapter 1. Identify the two proper nouns (or named entities) in the sentence:

US companies battle for control of 5G spectrum

and describe what entity linking is on this example and why it can be am-
biguous. Give examples of such ambiguity for the entities in the sentence.
In you have no named entity in mind, invent one.

You will consider that the name of a technique is a named entity when it
corresponds to a trademark. See the footnote2. 4 points

1Retrieved on October 21, 2019 from www.ft.com
2The 3rd Generation Partnership Project (3GPP) unites [Seven] telecommunications stan-

1

www.ft.com

Chapter 1. Represent the sentence:

US companies battle for control of 5G spectrum

with a predicate–argument structure. You should identify one predicate,
consisting of a verb, and up to three arguments:

predicate(arg0, arg1, arg2)

where the arguments will correspond to a combatant (arg0), another com-
batant, if separate (arg1), and a purpose (arg2).

One of the arguments may be missing in the sentence. Imagine what it
could be then. 4 points

Chapter 2. Describe what a concordance is and give all the case-insensitive
concordances of the string myndighet with one word before and one word
after in the text below: 3 points

Razzior mot byggbolag – facket jublar
Flera allvarliga arbetsmiljöbrister uppdagades vid en omfat-
tande myndighetskontroll av flera byggarbetsplatser i förra veckan.
En fjärdedel av företagen som utförde jobb stoppades från fort-
satt arbete.
...
"Äntligen lyssnar regeringen och myndigheterna på Byggnads.
Vi byggnadsarbetare är förbannat trötta på den kriminalitet
som tagit sig in i vår bransch", skriver byggfackets ordförande
Johan Lindholm i en kommentar till TT.
...
I och med ett regeringsuppdrag från 2018 har flera myndigheter
trappat upp sitt arbete mot brott i arbetslivet. Förra veckans
kontroller på totalt 75 byggarbetsplatser är en del av den insat-
sen. På vissa av arbetsplatserna var säkerheten så bristfällig att
arbetet tvingades upphöra omedelbart.

Source: svd.se, retrieved October 1st, 2019. Author TT

Chapter 2. Identify what the regular expressions in the list below match in
the text above (identify all the matches and just write one word before
and after, or write no match if there is no match): 15 points

List of case-insensitive regular expressions:

dard development organizations (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC), known as
“Organizational Partners” and provides their members with a stable environment to produce
the Reports and Specifications that define 3GPP technologies.
...
Implementers wishing to declare conformity to the 3GPP specifications related to 5G may
mark their equipment and documentation with the 5G logo which is protected by copyright
and trademark for the benefit of the 3GPP Partners. On receipt of the email authorization
from 3GPP, a royalty free Trademark license is granted to users to allow the use of the 3GPP
5G logo in relation with their products and services complying with the 3GPP specifications.
Retrieved on October 21, 2019 from www.3gpp.org

2

svd.se
www.3gpp.org

1. arbets
2. arbets\s
3. arbetsplatser(na)?
4. arbetsplatser(na){1,}
5. \p{L}+platser\p{L}+
6. bygg\p{L}+\.
7. [0-9]+
8. [0-9]{1,2}
9. [0-9]{3,}
10. (a)(.)\2\1

Chapter 2. What will be the output of the command:

tr -cs ’0-9’ ’\n’ <text

when applied to the text above (Flera allvarliga arbetsmiljöbrister...). 3 points

Chapter 2. Write a simple regular expression that matches all the words of a
text: lower and uppercase.
You will use a Unicode regular expression of the form \p{}. 2 points

Chapter 2. In this exercise, you will write a small program that matches
strings consisting of letters, digits, and dashes, and containing at least
one letter and one digit like V70, HP-21, x290, or A320neo. In the in-
vented text below:

In 2019, I flew on an A320neo to Paris and I had my old HP-21
with me.

your program should identify A320neo and HP-21.
Your program will read the file with these Python lines:

import regex as re

text = open(’text.txt’, encoding=’utf8’).read()

and then extract the strings with regexes. We will set aside the dashes to
make it simpler.
You will justify the usefulness of this program and proceed as suggested
below. If you think you can solve this problem in a better way, please do
it:

1. Why such a program could be useful? 1 point
2. Write a regular expression regex_1 that extracts tokens consisting

of either letters, digits, or letters and digits3. You will use Unicode
regex classes \p{} and gather them in a regex class []; You will apply
your regex to text using the re.findall() function.
Your program will return a list of tokens called words_numbers: 4 points

3N is the Unicode class to denote the numbers

3

words_numbers = re.findall(’regex_1’, text)

3. Write a regex regex_2 that matches the tokens in words_numbers
containing at least one digit. You will use it with the re.match()
statement: 4 points

re.match(’regex_2’, token)

The re.match() function returns a match object if regex_2 matches
exactly token, otherwise None;

4. Write a regex regex_3 that matches the tokens in words_numbers
containing at least one letter. You will use it with the re.match()
statement: 4 points

re.match(’regex_3’, token)

5. Write a small program (a loop) that traverses your words_numbers
list and extracts the tokens containing of at least one letter and one
digit. You will use a conjunction of the two previous statements. 1 point

Your final program should have this structure:

import regex as re

text = open(’text.tex’, encoding=’utf8’).read()
words_numbers = re.findall(’regex_1’, text)
for token in words_numbers:

if YOUR CODE WITH regex_2 AND regex_3:
print(token)

Chapter 3. What do the \p{Lu}+, \p{Greek}+, \p{Hiragana}+ and \P{Hiragana}+
Unicode regular expressions match? Note the uppercase P in the last ex-
pression.

Please, provide one answer for each regular expression. 4 points

Chapter 4. Describe what a supervised classifier is. What is the typical no-
tation of the input matrix of a classifier (predictors) and of the output
vector (response). Give the name of two classifiers: The one you used for
the assignments and a second one. 3 points

Chapter 5. Speech recognition engines usually consist of two parts: An acous-
tic processing module and a language modeling module. In the this ex-
ercise and the next ones, we will suppose that the output of the acoustic
module is this sequence of phonetic symbols:

["D@b"oIz"i:t"D@s"ændwIdZIz].

This sequence has at least eight possible interpretations, two of them
being:

The boys eat the sandwiches

and

4

Words Freq. Bigrams Freq.
The 25,000,000,000 <s> The 260,000,000
boys 55,000,000 The boys 520,000
eat 30,000,000 boys eat unseen
the 25,000,000,000 eat the 900,000
sandwiches 3,000,000 the sandwiches unseen
The 25,000,000,000 <s> The 260,000,000
boys 55,000,000 The boys 520,000
eat 30,000,000 boys eat unseen
the 25,000,000,000 eat the 900,000
sand 15,000,000 the sand 1,700,000
which 800,000,000 sand which unseen
is 5,000,000,000 which is 90,000,000

Table 1: Unigram and bigram frequencies. Counts derived and rounded from the
Google Web Trillion Word Corpus and used Norvig’s How To Do Things With
Words, The Count counts. Unigrams are from the 1/3 million most frequent
words; bigrams are from the 1/4 million most frequent bigrams. The total
number of tokens in the unigram file is 600,000,000,000

The boys eat the sand which is

We will use language models to disambiguate a sequence of phonemes and
transform it in a sequence of words. In this exercise, we will use the words
themselves. In a more realistic case, we would use a phonetic dictionary
instead.

1. List another possible sequence of words matching this phonetic se-
quence. 2 points

Chapter 5. We will first use a unigram language model to rank the two sen-
tences:

The boys eat the sandwiches

and

The boys eat the sand which is

1. Give the probability formula of the two sentence candidates using
a unigram language model. You will use the notation P (word) to
denote the probability of a word and you will ignore possible start-
of-sentence tokens (<s>). You have two formulas to write; 2 points

2. Compute these probabilities from the frequencies in Table 1. Use
fractions to represent the terms in the product, i.e. you will write 1

3 ,
for instance. The total number of words is 600,000,000,000.
Use Tables 7 and 8 in the Appendix to fill in the values; 5 points

3. Compute the product with a calculator; 3 points

4. Which candidate has the highest probability? 1 point

5. Discuss this result. 2 points

5

Chapter 5. You will now use bigrams:

1. Give the probability formula of the two sentence candidates using a
bigram language model. You will use the notation P (...) and you
assume that your sentence starts with a start-of-sentence symbol:
<s>; 2 points

2. You will handle the unseen bigrams with a backoff strategy as in the
second assignment. Explain what it is; 2 points

3. You will suppose that the sentences have an average of 25 words and
that the total number of tokens is 600,000,000,000. Give a rough
estimate of P (<s>) and of the number of <s> tokens, Count(<s>).
Keep it very simple: Do not normalize the probabilities i.e. do not
add the count of start-of-sentence symbols to the total number of
tokens. You will suppose that the corpus size is 600,000,000,000 with
or without start-of-sentence symbols; 3 points

4. Compute these probabilities from the frequencies in Table 1. You
will use fractions to represent the terms in the product, i.e. you will
write 1

3 .
Use Tables 9 and 10 in the Appendix to fill in the values. 5 points

5. Compute the product with a calculator; 3 points

6. Which candidate has the highest probability? 1 point

7. Comparing the sentence probabilities respectively with unigram and
bigram language models is paradoxical. Can you explain why? Think
of the size of the corpus. 2 points

Chapter 10. In this exercise, you will annotate a sentence with its syntactic
groups (chunks):

US companies battle for control of 5G spectrum

You will use the BIO tagset (or IOB2 tagset), where B stands for the
beginning of a chunk, I for inside, and O for outside. You will also use a
suffix to denote the type of the chunk. This is the same annotation as in
the 3rd assignment of the course.

To help you, you will follow the model of the annotation of this sentence
in Table 2:

A record date has not been set

where the word not is a negation adverb. In the sentence, there are only
two chunks: A noun chunk followed by a verb chunk. The verb chunk
consists of the main verb and all its auxiliaries. The word not is part of
this verb chunk.

Fill in Table 3 similarly with the parts of speech and the chunks with the
BIO tagset and syntactic suffixes, such as NP, VP.

1. As part of speech you will use either: Noun, Verb, or Preposition. 1 point

2. As chunk, you will use either: B-NP, I-NP, B-PP, B-VP. 3 points

6

Words Parts of speech Chunks
A Determiner (Article) B-NP
record Noun I-NP
date Noun I-NP
has Verb B-VP
not Adverb I-VP
been Verb I-VP
set Verb I-VP

Table 2: The sentence A record date has not been set with a CoNLL-like anno-
tation

Words Parts of speech Chunks
US
companies
battle
for
control
of
5G
spectrum

Table 3: The sentence US companies battle for control of 5G spectrum with a
CoNLL-like annotation

Chapter 15. The CoNLL 2012 dataset contains sentences with their semantic
roles. We will use a simplified annotation of it in this examination. Table 4
shows an example of it for the sentence:

I worry more about things becoming so unraveled on the other
side that they might become unable to negotiate.

This format uses columns to describe the words, parts of speech, and the
semantic predicates and arguments of a sentence.

The two first columns are the words and their parts of speech. The rest
of the columns corresponds to the predicates and their arguments:

1. The third column in Table 4 indicates the predicates and their re-
spective sense. How many predicates are there in this sentence? List
them. 2 points

2. The columns to the right of the predicates represent their respec-
tive arguments in their order in the sentence. The arguments are
bracketed with their type to the right of the first bracket. How many
arguments does the first predicate has (4th column)? The (V*) code
is to designate the predicate. 2 points

3. The Propbank database gives the meaning of the arguments. The
verb worry.02 has two core arguments:

(a) Arg0-PPT: worrier (vnrole: 31.3-2-experiencer)

7

Word POS Pred Args1 Args2 Args3 Args4
I PRP – (ARG0*) * * *
worry VBP worry.02 (V*) * * *
more RBR – (ARGM-ADV*) * * *
about IN – (ARG1* * * *
things NNS – * (ARG1*) * *
becoming VBG become.01 * (V*) * *
so RB – * (ARG2* * *
unraveled JJ – * *) * *
on IN – * (ARGM-LOC* * *
the DT – * * * *
other JJ – * * * *
side NN – * *) * *
that IN – * (C-ARG2* * *
they PRP – * * (ARG1*) (ARG0*)
might MD – * * (ARGM-MOD*) *
become VB become .01 * * (V*) *
unable JJ – * * (ARG2* *
to TO – * * * *
negotiate VB negotiate.01 *) *) *) (V*)
. . – * * * *

Table 4: A simplified excerpt from CoNLL 2012

(b) Arg1-PAG: topic of worry (vnrole: 31.3-2-stimulus)

Give the values of Arg0 and Arg1 in the sentence, i.e. the words that
form these arguments in the sentence. 3 points

4. The ARGM arguments are not specific to a verb and can apply to
any of them. M is for modifier. ARGM-ADV means that it is an
adverb that qualifies the predicate. What is its value (the words that
compose it)? 2 points

5. The 5th column corresponds to the second predicate. In Propbank,
become.01 has two core arguments:

(a) Arg1-PPT: entity changing
(b) Arg2-PRD: new state

When an argument is split into two segments, the second segment
starts with a C- meaning discontinuous. Give the value of the two
complete core arguments of this column. 2 points

6. ARGM-LOC corresponds to a location. Give its value in this column; 1 point

7. The 6th column corresponds to the third predicate, the second be-
come.01 of the sentence. Give the value of all the arguments. MOD
means modal verb; 3 points

8. Finally, negotiate.01 has three arguments:

(a) Arg0-PAG: negotiator (vnrole: 36.1-Agent)
(b) Arg1-COM: explicit other party (vnrole: 36.1-co-agent)
(c) Arg2-PPT: agreement (vnrole: 36.1-Theme)

Give their values in the 7th column. 1 point

9. In this column, two arguments do not show. Name them. 1 point

10. How could you find the two missing arguments of negotiate.01? 2 points

11. Represent the predicate–argument structures for the four predicates
in the form of:

8

predicate(arg0: value, arg1: value, arg2: value, ...)

You have four lines to write. 2 points

9

2 Problem
In this part, documents are allowed. It is worth 120 points.

Semantic role labeling is the process of recognizing predicate–argument struc-
tures in a sentence. This is also called semantic parsing. In this part of the
examination, your will analyze and implement a simplified version of a seman-
tic role labeler created by Zhou and Xu (2015). Although their system is now
behind the state of the art, the techniques they introduced are still dominant
in this field. For the most recent figures, see He et al. (2018).

Before their paper, the most common way to implement a semantic role
labeler was to apply a part-of-speech tagger and a dependency parser to a sen-
tence, extract features from the words, parts of speech, and dependency graph,
and then train a classifier from these features. This classifier was applied to an
unseen sentence to predict the predicates and the arguments.

In this part, you will program a system that will directly predict the argu-
ments from the words.

As programming language, you will use Python (strongly preferred); possibly
Java, Perl, or Prolog. You will focus on the program structure and not on the
syntactic details. You can ignore the Python modules for instance.

2.1 Analyzing the Paper
1. Read the Abstract and Introduction in Zhou and Xu (2015, pp. 1127-

1128).

(a) From the Abstract and Introduction sections, describe the key prop-
erties of Zhou and Xu (2015)’s method and what they claim is novel; 5 points

2. Read the three introduction paragraphs up to Section 3.1 of the Ap-
proaches section (Zhou and Xu, 2015, pp. 1128-1129).

(a) Describe what are the x and y variables4; 4 points
(b) Comment Eq. 1 and identify the course assignment, where you used

a similar technique. Describe very shortly what you did and what
were x and y; 2 points

(c) Eq. 1 uses an activation function σ. Knowing that you used logistic
regression in the laboratories, what is the name of the σ function you
used? 1 point

(d) Give the name of the machine learning engine Zhou and Xu (2015)
use instead. 2 points

3. Read the last paragraph of the Long Short-Term Memory subsection
(Zhou and Xu, 2015, Sect. 3.1, pp. 1129-1130), starting with In this
work, we utilize... and ending with ... good performance.

(a) Knowing that the input corresponds to the sentence’s words, repre-
sent graphically how these words are processed by the LSTM and
give a short description of your sketch. You can think of a LSTM as
an elaborate logistic regression classifier. You will represent it as a
box in your sketch. 6 points

4x should probably be better denoted x

10

2.2 Understanding the Corpus
The core idea of Zhou and Xu (2015)’s method is to consider the semantic
arguments of a predicate as chunks (syntactic groups) and process them as you
did in the course’s third assignment on chunking.

1. In Table 1 of Zhou and Xu (2015, Section 3.2)’s paper, the arguments of
the set.02 predicate are in the label column (last column)5. The Propbank
database lists the following arguments for set.02:

(a) Arg0-PAG: agent, setter

(b) Arg1-PPT: thing set

(c) Arg2-PRD: attribute of arg1

Give the name and value (the words in the sentence) of the two arguments
of set in this table. 2 points

2. Following the annotation in Table 4, recreate the bracketed annotation of
the arguments of the sentence A record date hasn’t been set. You will fill
in the Args1 column in Table 5.

Use the sheet in the Appendix. 5 points

Words Pred Args1
A –
record –
date –
has –
not –
been –
set set.02 (V*)
. – *

Table 5: Fill in the arguments with a bracketed notation

3. You will now replace the bracketed annotation in Table 4 with the BIO
tagset and suffixes. Using the example of Table 1, in Zhou and Xu (2015,
Section 3.2)’s paper, fill in Table 6.

Use the sheet in the Appendix. 10 points

You will consider that ARG2 and C-ARG2 are different tags. The first
argument of worry.02 and the rest of the first row are given to help you
start.

5In their paper, Zhou and Xu (2015) do not give the sense number of set. In the original
corpus, it is sense number 02

11

Word Pred Args1 Args2 Args3 Args4
I – B-ARG0 O O O
worry worry.02 B-V
more –
about –
things –
becoming become.01 B-V
so –
unraveled –
on –
the –
other –
side –
that –
they –
might –
become become .01 B-V
unable –
to –
negotiate negotiate.01 B-V
. – O

Table 6: Fill in the arguments with a BIO notation

2.3 Argument Detection
In this section, you will convert the corpus annotation from brackets to chunks,
extract the features, vectorize them, and train a model. You will apply this
model to a test set.

The annotation you will analyze is slightly simplified from that of the real
original OntoNotes corpus. You will assume that Table 4 contains all the cases
to analyze. The number of predicates and thus argument columns may vary
however, as well as the number and names of arguments in the columns.

2.3.1 From Brackets to Chunks

Given a CoNLL corpus using the format in Table 4, you will now write a con-
verter that transforms the bracketed arguments into BIO tags like those in
Table 6.

You will assume that the whole training set is stored in the corpus_train
variable, which consists of a list of sentences, where each sentence is a list of
Python dictionaries. Each dictionary corresponds to one row i.e. one word,
where the keys are the column heads and the values, the values in the row.

The excerpt below shows the data encoding of three first rows from Table 4
as well as the two last rows:

corpus_train = [
...
[{’word’: ’I’, ’pos’: ’PRP’, ’pred’: ’-’, ’args1’: ’(ARG0*)’,

’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’},

12

{’word’: ’worry’, ’pos’: ’VBP’,’pred’: ’worry.02’, ’args1’: ’(V*)’,
’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’},

{’word’: ’more’,’pos’: ’RBR’,’pred’: ’-’, ’args1’: ’(ARGM-ADV*)’,
’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’},

...
{’word’: ’negotiate’, ’pos’: ’VB’, ’pred’: ’negotiate.01’, ’args1’: ’*)’,

’args2’: ’*)’, ’args3’: ’*)’, ’args4’: ’(V*)’},
{ ’word’: ’.’, ’pos’: ’.’, ’pred’: ’-’, ’args1’: ’*’,

’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’}],
...
]

As a suggestion, you can solve this bracket-to-tag transformation in six steps.
Nonetheless, feel free to use your own solution, if you find something smarter.

1. Given a sentence, write the index_preds(sentence) function that returns
the list of row indices of the predicates. As a convention, the first row will
have index 0.

In Table 4, your function should return [1, 5, 15, 18], as the predicates
are in rows 1, 5, 15, and 18, and in Table 5, [6] as this sentence has only
one predicate in row 6; 6 points

2. From the index list, compute the number of predicates in the sentence
pred_cnt; 1 point

3. In a sentence, the argument columns will be named ’args1’, ’args2’,
’args3’, ..., ’argsN’, and there will be as many columns as there are
predicates in the sentence.

Write the gen_arg_names(pred_cnt) function that generates the argu-
ment column names from the number of arguments: pred_cnt. For in-
stance, if pred_cnt equals 4, your function should generate: 3 points

[’args1’, ’args2’, ’args3’, ’args4’]

4. Given a sentence and an argument column name, for instance ’args1’,
write the conversion function,

brackets2BIO_col(sentence, arg_col_name)

for the corresponding column. For the ’args1’ column, your function

brackets2BIO_col(sentence, ’args1’)

should return:

corpus_train = [
...
[{’word’: ’I’, ’pos’: ’PRP’, ’pred’: ’-’, ’args1’: ’B-ARG0’,

’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’},
{’word’: ’worry’, ’pos’: ’VBP’,’pred’: ’worry.02’, ’args1’: ’B-V’,

’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’},
{’word’: ’more’,’pos’: ’RBR’,’pred’: ’-’, ’args1’: ’B-ARGM-ADV’,

13

’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’},
...
{’word’: ’negotiate’, ’pos’: ’VB’, ’pred’: ’negotiate.01’,

’args1’: ’I-ARG1’, ’args2’: ’*)’, ’args3’: ’*)’,
’args4’: ’(V*)’},

{ ’word’: ’.’, ’pos’: ’.’, ’pred’: ’-’, ’args1’: ’O’,
’args2’: ’*’, ’args3’: ’*’, ’args4’: ’*’}],

...
]

Note that the other columns are still in the bracketed format.

To help you, a possible start for this function is: 16 points

def brackets2BIO_col(sentence, arg):
in_chunk = False # If we are in a chunk or not
current_chunk = None # The value of the argument,

for instance ARG1
for word in sentence:

if word[arg][0] == ’(’ and word[arg][-1] == ’)’:
word[arg] = ’B-’ + word[arg][1:-2]

elif...

5. Using the functions you wrote before, write the conversion function
brackets2BIO(sentence) for all the arguments of a sentence. 4 points

6. Apply your function to all the sentences in corpus_train. 1 points

2.3.2 Extracting the Features

1. Read the two first paragraphs of the Pipeline section in Zhou and Xu
(2015, Sect. 3.2, page 1130)’s paper and describe the feature vector they
use.

2. Build manually the feature matrix X as well as the y vector for the sen-
tence A record date has not been set. in Table 1 of the paper (Zhou and
Xu, 2015, Sect. 3.2, page 1130). Your matrix should have 8 rows and 4
columns. Your y vector will have 8 dimensions. You will use symbols and
not numbers. As in Zhou and Xu (2015)’s paper, you will use a context
length of 3. This exercise is simply the identification of X and y in Table
1, page 1130, of their paper. 2 points

Use the sheets in the Appendix ;

3. Similarly to the previous exercise, build manually the feature matrix X as
well as the y vector for the three first words of the sentence

I worry more about things becoming so unraveled on the other
side that they might become unable to negotiate.

in Table 6. You will arrange your matrix and vector by order of predicate
and you will separate the corresponding groups of features with ellipses
(...);

14

Your matrix will have 12 rows and 4 columns; your vector will have 12
dimensions, not counting the ellipses. The matrix below shows you how
to present your features. Just replace the dashes (‘–’) with values. 6 points

Use the sheets in the Appendix.

X =



I worry.02 – –
– – – –
– – – –
...
I become.01 – –
– – – –
– – – –
...
I become.01 – –
– – – –
– – – –
...
I negotiate.01 – –
– – – –
– – – –



;y =



B-ARG0
–
–
...
–
–
–
...
–
–
–
...
–
–
–


4. You will now extract all the features of all the sentences of your corpus.

You will ignore a possible padding of the context. For a given sentence,
you will have to run the extraction as many times as there are predicates.
You will store the result in a dictionary with the keys ’argu’, ’pred’,
’ctx-p’, and mr as in Zhou and Xu (2015).

(a) Write the function

X, y = extract_features_col(sentence, arg, arg_inx)

that extracts the feature X matrix and the y vector for one predicate
in one sentence. arg is the column name, for instance args2 and
arg_inx is the index of the predicate in the sentence, 5, for instance: 12 points

extract_features_col(sentence, ’args2’, 5)

(b) Write the function X, y = extract_features(sentence) that ex-
tracts the feature X matrix and the y vector for all the predicates in
one sentence; 6 points

(c) Write the loop that extracts all the features for all the sentences in
corpus_train. 1 point

2.3.3 Training a Model

You will now train a model with a simple logistic regression classifier.

1. Write the code to convert yourXmatrix of symbols into a one-hot encoded
matrix. It is just two lines and you will use DictVectorizer(); 2 points

2. Write the code to train a model. It is just two lines and you will use the
LogisticRegression() class; 2 points

15

2.3.4 Predicting the Tags

You will now predict the arguments. We will suppose first that the predicates
are given in the test set. As for the training set, you will assume that the
whole test set is stored in the corpus_test variable, which consists of a list
of sentences, where each sentence is a list of Python dictionaries. The only
difference is that corpus_test will not have the argsn keys.

1. Describe how you would modify

extract_features_col(sentence, arg, arg_inx)

and

extract_features(sentence)

to extract the features from the test set. You do not need to write a
program. 5 points

2. Write a function to convert your Xtest matrix of symbols into a one-hot
encoded matrix. You will use DictVectorizer(); 1 point

3. Write the code to predict the arguments. 3 points

2.4 Predicate Detection
In their paper, Zhou and Xu (2015) assumed that the predicates were given in
the test set. This is not the case in a real application. We will now imagine
a technique to determine if a word is a predicate or not, and if yes, its sense
number.

1. Knowing that the predicates are verbs and that all the predicates are in
the Propbank dictionary, describe a baseline technique to tell if a word is
a predicate or not; 4 points

2. Each predicate has a finite number of senses. For example, worry has two
senses in Propbank:

(a) worry.01: Use this sense when the worrier is the direct object of an
active construction, or the subject of a passive construction.

i. Arg0-PAG: cause of worrying, troublesome topic (vnrole: 31.1-
stimulus)

ii. Arg1-PPT: worrier (vnrole: 31.1-experiencer)
iii. Arg2-MNR: instrument, when separate from agent

Example: Mr. Rowe also noted that [political concerns]Arg0 also
worried [New England Electric]Arg1.

(b) worry.02: Use this sense when the worrier is the subject of an active
construction.

i. Arg0-PPT: worrier (vnrole: 31.3-2-experiencer)
ii. Arg1-PAG: topic of worry (vnrole: 31.3-2-stimulus)

16

Example: Similarly, when Chen Shui-bian negotiates with Beijing,
[no one]Arg0 willworry [about him selling Taiwan down the river]Arg1.

Predicates have at least one denoted 01.

Describe shortly a simple classifier to determine the sense of worry using
a context of five words surrounding this word. 4 points

3. Knowing that there are about 5500 verbs in Propbank, how would you
then proceed to determine the sense of any given predicate? 4 points

References
He, L., Lee, K., Levy, O., and Zettlemoyer, L. (2018). Jointly predicting pred-
icates and arguments in neural semantic role labeling. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics, Mel-
bourne.

Zhou, J. and Xu, W. (2015). End-to-end learning of semantic role labeling using
recurrent neural networks. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics, Beijing.

17

18

3 Appendix
You can use the tables below in your exam papers. Just detach them and fill
them in. Insert them with your sheets. Do not forget to write your exam code
on the sheets.

Words Freq. Probabilities
The 25,000,000,000
boys 55,000,000
eat 30,000,000
the 25,000,000,000
sandwiches 3,000,000
Sentence probability

Table 7: Fill in the probabilities with a unigram language model. The total
number of tokens is 600,000,000,000. You will try to simplify your fractions, for
instance from 2/6 to 1/3

Words Freq. Probabilities
The 25,000,000,000
boys 55,000,000
eat 30,000,000
the 25,000,000,000
sand 15,000,000
which 800,000,000
is 5,000,000,000
Sentence probability

Table 8: Fill in the probabilities with a unigram language model. The total
number of tokens is 600,000,000,000. You will try to simplify your fractions, for
instance from 2/6 to 1/3

19

Count(<s>) =

Words Freq. Conditional probabilities
<s> The 260,000,000
The boys 520,000
boys eat unseen
eat the 900,000
the sandwiches unseen
Sentence probability

Table 9: Fill in the probabilities with a bigram language model. You will try to
simplify your fractions, for instance from 2/6 to 1/3

Words Freq. Conditional probabilities
<s> The 260,000,000
The boys 520,000
boys eat unseen
eat the 900,000
the sand 1,700,000
sand which unseen
which is 90,000,000
Sentence probability

Table 10: Fill in the probabilities with a bigram language model. You will try
to simplify your fractions, for instance from 2/6 to 1/3

20

Words Parts of speech Chunks
US
companies
battle
for
control
of
5G
spectrum

Table 11: A sentence with a CoNLL-like annotation

21

22

Words Pred Args1
A –
record –
date –
has –
not –
been –
set set.02 (V*)
. – *

Table 12: Fill in the arguments with a bracketed notation: Third column

23

Word Pred Args1 Args2 Args3 Args4
I – B-ARG0 O O O
worry worry.02 B-V
more –
about –
things –
becoming become.01 B-V
so –
unraveled –
on –
the –
other –
side –
that –
they –
might –
become become .01 B-V
unable –
to –
negotiate negotiate.01 B-V
. – O

Table 13: Fill in the arguments with a BIO notation: columns 3 to 6

X =



A set been set . 0
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
. set been set . 1


;y =



B-A1
–
–
–
–
–
–
O



24

X =



I worry.02 – –
– – – –
– – – –
...
I become.01 – –
– – – –
– – – –
...
I become.01 – –
– – – –
– – – –
...
I negotiate.01 – –
– – – –
– – – –



;y =



B-ARG0
–
–
...
–
–
–
...
–
–
–
...
–
–
–



25

	Closed Book Part: Questions
	Problem
	Analyzing the Paper
	Understanding the Corpus
	Argument Detection
	From Brackets to Chunks
	Extracting the Features
	Training a Model
	Predicting the Tags

	Predicate Detection

	Appendix

