
EDAN20
Final Examination

Pierre Nugues

October 29, 2018

The examination is worth 255 points. The distribution of points is indicated
with the questions. You need 40% to have a mark of 4 and 60% to have a 5.

1 Closed Book Part: Questions
In this part, no document is allowed. It is worth 118 points.

Chapter 1. Cite three applications that use natural language processing to
some extent. 3 points

Chapter 1. Annotate each word of the sentence:

EU leaders shelve next month’s special summit1

with its part of speech. You will use parts of speech you learned at school:
common noun, proper noun, verb, and adjective. There are two adjectives,
four nouns, and one verb. You will annotate the “’s” suffix as a possessive
marker (POS). 3 points

Chapter 1. Draw the syntactic graph of the sentence:

EU leaders shelve next month’s special summit

using dependency relations. You will first identify the main verb, then,
the subject, the object, and a time modifier inside the object. You can
first use groups of two words, for instance EU leaders instead of EU and
leaders. Your graph should show what word the time modifier modifies.
Then you will determine what is the head inside these groups, for instance
is EU or leader the head of EU leaders? 5 points

Chapter 1. Identify the proper noun (or named entity) in the sentence:

EU leaders shelve next month’s special summit

and describe what entity linking is on this example and why it can be
difficult. 8 points

Chapter 1. Represent the sentence:
1Retrieved on October 18, 2018 from www.ft.com

1

www.ft.com

EU leaders shelve next month’s special summit

with a predicate–argument structure. You should identify one predicate
(the verb) and two arguments: predicate(arg1, arg2). 4 points

Chapter 2. Describe what a concordance is and give all the case-insensitive
concordances of the string skad with one word before and one word after
in the text below (excluding the title): 3 points

Fler skadades på byggen i somras
Antalet anmälda skador i samband med arbetsplatsolyckor inom
byggbranschen ökade med omkring tio procent i somras, jämfört
med motsvarande period förra året, rapporterar Ekot i Sveriges
Radio.
Under juni, juli och augusti anmäldes 802 allvarliga olyckor
på byggarbetsplatser till Arbetsmiljöverket. Det handlar bland
annat om fallskador, personer som skadades med verktyg och
belastningsskador. Samtliga anmälda olyckor medförde sjuk-
skrivningar. Under samma period i fjol anmäldes 725 olyckor.
– Det är allvarligt överhuvudtaget att det är så höga siffror på
antalet skadade inom byggbranschen, säger Tomas Blombäck,
regionchef på Arbetsmiljöverket region Öst, till Ekot.

Sydsvenskan.se, Retrieved October 18, 2018. Author TT and Maria Repitsch

Chapter 2. Identify what the regular expressions in the list below match in
the text above (identify all the matches and just write one word before
and after, or write no match if there is no match): 15 points

List of case-sensitive regular expressions:

1. skador

2. \sskador\s

3. skad(or)+

4. skad(or)?

5. olyck\p{L}+

6. [a-z]olyck\p{L}+

7. [^a-z]olyck\p{L}+

8. olyckor.

9. olyckor\.

10. (.)(.)\2\1

Chapter 2. What will be the output of the command: 3 points

tr -cs ’0-9’ ’\n’ <text

when applied to the text above (Fler skadades på byggen i somras...).

Chapter 2. What will be the output of the command: 3 points

2

tr -cs ’0-9’ ’\n’ <text | sort -n

when applied to the text above (Fler skadades på byggen i somras...).

Chapter 2. Write a simple regular expression that matches all the words of a
text: lower and uppercase. 1 point

You will use a Unicode regular expression of the form \p{}.

Chapter 2. Write a regular expression that matches alternate sequences of
three identical letters in a text, for instance in the text:

Fler skadades aaabbbaaabbb på byggen i somras

your regular expression should identify aaabbbaaabbb. 8 points

You will proceed in three steps:

1. Write a regular expression, where you match sequences of three iden-
tical characters like bbb. You will use backrefences, \nn, where nn is
a number. As it will contain a backslash, you must use the r prefix
as in r’my_regex’ so that Python does not interpret it as a number.

2. Write a second regular expression, where you extend your regular
expression so that it can match alternate sequences of three identical
characters, like xxxyyyxxxyyy.

3. In a third step, extend your regular expression so that the number of
triples of each sequence do not need to be identical, like for instance:
xxxyyyxxx (two xxx and one yyy) and xxxyyyxxxyyy (two xxx and
two yyy).

With the program:

import regex as re

regex = # your regex
string1 = ’Fler skadades aaabbbaaa på byggen i somras xxxyyyxxx’
string2 = ’Fler skadades aaabbb på byggen i somras dddcccdddccc’

for string in [string1, string2]:
matches = [match.group() for match in re.finditer(regex, string)]
print(matches)

your regex should print:

[’aaabbbaaa’, ’xxxyyyxxx’]
[’aaabbb’, ’dddcccdddccc’]

Chapter 2. In this exercise, you will compute the edit distance between table
and cables. You will use three edit operations: deletions, substitutions,
and insertion, and you will represent the computation using a matrix.

3

s 6 7 6
e 5 6 5
l 4 5 4 3
b 3 4 3 2 3
a 2 3 2 3 4 5
c 1 2 3 4 5 6
start 0 1 2 3 4 5

start t a b l e

Figure 1: Edit operations

i− 1, j i, j

i− 1, j − 1 i, j − 1

delete

replace
insert

1. The algorithm to compute the edit distance is given by this recursive
relation: 3 points

edit_distance(i, j) = min

 edit_distance(i− 1, j) + del_cost
edit_distance(i− 1, j − 1) + subst_cost
edit_distance(i, j − 1) + ins_cost

 .

What are the typical costs associated with deletions, substitutions,
insertion, and copies;

2. The cells in Table 1 are filled from adjacent left and lower cells with
the edit operations. Explain how to use Fig. 1 to apply these edit
operations; 3 points

3. Fill the remaining empty cells in Table 1. You will copy the whole
table on your exam sheet or use the one in the Appendix; 6 points

Chapter 3. What do the \p{Latin}+, \p{Cyrillic}+, and \p{Arabic}+ Uni-
code regular expressions match? Please, provide one answer for each reg- 3 points
ular expression.

Chapter 4. Describe what a supervised classifier is. What is the typical no-
tation of the input matrix of a classifier (predictors) and of the output
vector (response). Give the name of two classifiers: The one you used for
the assignments and a second one. 4 points

Chapter 5. Give the probabilistic language model of the sentence:

Fler skadades på byggen i somras

using no n-gram approximation. You will ignore possible start and end of
sentence symbols. 2 points

4

Chapter 5. Using a bigram approximation, give the probabilistic language
model of the sentence:

Fler skadades på byggen i somras

You will ignore possible start and end of sentence symbols. 2 points

Chapter 5. Using a trigram approximation, give the probabilistic model of the
sentence:

Fler skadades på byggen i somras

You should have exactly the same number of terms as in the previous
question. You can include a start of sentence symbol or not. 2 points

Chapter 5. Using the counts in Table 1, you will compute the probability of
the sentence:

Fler skadades på byggen i somras

using a bigram and a trigram approximations. You will use fractions to
represent the terms in the product and you will not try to reduce them,
i.e. you will write 1

3 and not 0.33. 8 points

The count of fler in the .se web domain is 103,000,000. To compute its
probability, you would need an estimate of the total number of words in
the Swedish web:

P (fler) =
Count(fler)

#words in the Swedish web
.

You will use the Selma corpus instead that consists of about one million
words and where you have 32 fler.

Table 1: Bigram and trigram counts retrieved from Google.com on October 22,
2018 with the search limited to the Swedish domain (site:se).

Bigrams Bigram counts Trigrams Trigram counts
fler skadades 16 900
skadades på 31 200 fler skadades på 13 700
på byggen 37 900 skadades på byggen 13 200
byggen i 37 900 på byggen i 17 000
i somras 3 640 000 byggen i somras 17 200

Chapter 8. In this exercise, you will analyze the annotation of named entities.
Table 2 shows a sentence from the CoNLL 2003 corpus of English (Tjong
Kim Sang and De Meulder, 2003). It contains annotations for the parts of
speech, noun groups, verb groups, and prepositions (the chunks), as well
as named entities.

The chunk annotation in Table 2 uses the IOB tag set, where I stands
for inside, O, for outside, and B for between. We use this B to start of
a new chunk when two adjacent chunks are of the same category. This

5

annotation is different from the IOB2 tag set that we used in the chunking
laboratory, where B stands for begin (the beginning of a chunk).

1. Describe in which way the annotations IOB (the one in Table 2)
and IOB2 (the one you used in the lab 3) are different and use the
example of

South African provincial side Boland
to contrast them. 2 points

2. Write the sentence in Table 2 on your exam sheet and draw a box
around each chunk. Label each box with its category: NP, VP, or
PP. You will ignore the outside words (O). 2 points

3. Write the sentence in Table 2 and draw box around each named
entity. You will label the boxes with their category. 2 points

Table 2: An excerpt from the CoNLL 2003 corpus of English using the IOB
tagset(Tjong Kim Sang and De Meulder, 2003).

Words Parts of speech Chunks Named entities
South JJ I-NP I-MISC
African JJ I-NP I-MISC
provincial JJ I-NP O
side NN I-NP O
Boland NNP B-NP I-ORG
said VBD I-VP O
on IN I-PP O
Thursday NNP I-NP O
they PRP B-NP O
had VBD I-VP O
signed VBN I-VP O
Leicestershire NNP I-NP I-ORG
fast JJ I-NP O
bowler NN I-NP O
David NNP I-NP I-PER
Millns NNP I-NP I-PER
on IN I-PP O
a DT I-NP O
one CD I-NP O
year NN I-NP O
contract NN I-NP O
. . O O

Chapter 8. In this exercise, you will describe how to build a simple named
entity recognizer using a linear classifier. This exercise is very similar to
the laboratory on chunking.

1. Describe what the training step is. Describe how you would use the
data in Table 2 to build the input matrix X (predictors) and output
y (response); 3 points

6

2. Build this input matrix using features consisting of the current word,
the previous word, and the next word, the current part of speech, the
previous part of speech, and the next part of speech. You will write
the four first lines of the matrix and output vector; 3 points

3. Describe what the test step is and what you would use as data; 3 points

4. Name the two scikit-learn methods you would use to carry out these
two steps (training a model and predicting a vector); 2 points

5. The training step only accepts numerical matrices. Describe what a
vectorization (or one-hot encoding) is and how you would transform
a matrix of symbols (strings) into a matrix of numbers. Name the
scikit-learn class and methods for it. 5 points

6. Give the definition of the precision and recall metrics to measure the
performance of your recognizer. 2 points

Chapter 14. Table 3 shows two sentences from the CoNLL 2011 corpus (Prad-
han et al., 2011). The Chain column contains the coreference chains of
entities. Give the coreference chains 0, 6, 8, 15, and 23 appearing in these
two sentences as well as their list of mentions. You will use the notation:

CorefChain(0) = {Mention1,Mention2, ...},
CorefChain(6) = {Mention1,Mention2, ...},
CorefChain(8) = {Mention1,Mention2, ...},
CorefChain(15) = {Mention1,Mention2, ...},
CorefChain(23) = {Mention1,Mention2, ...},

You will ignore chain 16. 5 points

7

Table 3: Simplified annotation of two sentences in the CoNLL 2011 corpus.
After Pradhan et al. (2011).

Document Inx Word POS Parse bit Type Chain
wsj_0771 0 “ “ (TOP(S(S* * -
wsj_0771 1 Vandenberg NNP (NP* (PERSON) (8|(0)
wsj_0771 2 and CC * * -
wsj_0771 3 Rayburn NNP *) (PERSON) (23)|8)
wsj_0771 4 are VBP (VP* * -
wsj_0771 5 heroes NNS (NP(NP*) * -
wsj_0771 6 of IN (PP* * -
wsj_0771 7 mine NN (NP*)))) * (15)
wsj_0771 8 , , * * -
wsj_0771 9 ” ” *) * -
wsj_0771 10 Mr. NNP (NP* * (15
wsj_0771 11 Boren NNP *) (PERSON) 15)
wsj_0771 12 says VBZ (VP* * -
wsj_0771 13 , , * * -
wsj_0771 14 referring VBG (S(VP* * -
wsj_0771 15 as RB (ADVP* * -
wsj_0771 16 well RB *) * -
wsj_0771 17 to IN (PP* * -
wsj_0771 18 Sam NNP (NP(NP* (PERSON* (23
wsj_0771 19 Rayburn NNP *) *) -
wsj_0771 20 , , * * -
wsj_0771 21 the DT (NP(NP* * -
wsj_0771 22 Democratic JJ * (NORP) -
wsj_0771 23 House NNP * (ORG) -
wsj_0771 24 speaker NN *) * -
wsj_0771 25 who WP (SBAR(WHNP*) * -
wsj_0771 26 cooperated VBD (S(VP* * -
wsj_0771 27 with IN (PP* * -
wsj_0771 28 President NNP (NP* * -
wsj_0771 29 Eisenhower NNP *))))))))))) (PERSON) 23)
wsj_0771 30 . . *)) * -

wsj_0771 0 “ “ (TOP(S* * -
wsj_0771 1 They PRP (NP*) * (8)
wsj_0771 2 allowed VBD (VP* * -
wsj_0771 3 this DT (S(NP* * (6
wsj_0771 4 country NN *) * 6)
wsj_0771 5 to TO (VP* * -
wsj_0771 6 be VB (VP* * (16)
wsj_0771 7 credible JJ (ADJP*))))) * -
wsj_0771 8 . . *)) * -

8

2 Problem
In this part, documents are allowed. It is worth 137 points.

Named entity linking (NEL) is the process of recognizing names of things,
such as persons, locations, organization, in a text and linking them to unique
identifiers. In this part, you will analyze and implement a simplified version of
a NEL system created by Yang et al. (2017) for an evaluation organized by the
U.S. National Institute of Standards and Technology (NIST) (Ji et al., 2017).

The system to analyze is called TAI for Tencent AI lab and the evaluation is
called EDL-TAC for entity discovery and linking at the text analysis conference.
The second paper by Ji et al. (2017) is only provided for information and will
not be used for programming.

Named entity linking usually consists of two steps:

1. The first step recognizes mentions of named entities. This step is similar
to chunking that you carried out in the third assignment of the course.
In Fig. 2, this corresponds to the detection of William Shakespeare and
Stratford-upon-Avon in the sentence:

William Shakespeare was born and brought up in Stratford-
upon-Avon.

2. The second step identifies the “reals things” behind these mentions. For
each real thing, we need a unique identifier stored in a database. In
Fig. 2, we could link William Shakespeare to a Wikidata identifier: Q692
and Stratford-upon-Avon to Q189288. At Lund University, we would use
a Swedish personal number so that student Shakespeare, William could
register to this examination.

As programming language, you can use Python (strongly preferred), Java,
Perl, or Prolog. You will focus on the program structure and not on the syntactic
details. You can ignore the Python modules, Java packages or imports for
instance.

2.1 Analyzing the Papers
Read the Abstract, Introduction, and Overview sections of Yang et al. (2017)
and the Tri-lingual EDL Task section of Ji et al. (2017), including Table 2 in
their paper.

1. Describe the overall structure of the system by Yang et al. (2017). You
can just reformulate their text; 4 points

2. Describe what are the NIL entities; referring to wikipedia, give an example
of what could be a NIL entity; 4 points

3. The organizers asked the participants not to make their rankings public
and avoid derogatory comparisons. Analyzing Table 6 in Ji et al. (2017)
and Table 2 in Yang et al. (2017) as well as the last figure of their abstract,
guess the rank of TAI system. You can look at the NERLC column (strong
typed all match). There is a possible glitch in the figures for English. 4 points

9

Named entities

William Shakespeare was born and brought

up in Stratford-upon-Avon

Figure 2: Named entities: entities that we can identify by their names. Portrait:
credits Wikipedia. Map: Samuel Lewis, Atlas to the topographical dictionaries
of England and Wales, 1848, credits: archive.org

2.2 Understanding the Corpus
The NIST provided the corpus in the form of XML documents containing the
texts to analyze and one file containing the annotations.

The text below is an excerpt of the EDL-TAC corpus in English and Table 4
shows the annotations, where they marked the named entities, their index in
the text, and for each entity, its Freebase identifier and its type. Freebase is a
database of entities used by Google and similar to Wikidata.

<DOC id="ENG_NW_001278_20130109_F00011TB4">
<DATE_TIME>2013-01-09T12:19:34</DATE_TIME>
<HEADLINE>
S. Korea’s opposition party elects interim leader
</HEADLINE>
<AUTHOR>Kim Junghyun</AUTHOR>
<TEXT>
S. Korea’s opposition party elects interim leader

S. Korea’s opposition party elects interim leader

SEOUL, Jan. 9 (Xinhua) -- South Korea’s main opposition Democratic

10

Table 4: The annotation of the XML text

Entity Index span Identifier Cat Type
S. Korea 101-108 m.06qd3 GPE NAM
party 123-127 m.0hzrnfb ORG NOM
Kim Junghyun 171-182 NIL01133 PER NAM
S. Korea 200-207 m.06qd3 GPE NAM
party 222-226 m.0hzrnfb ORG NOM
S. Korea 251-258 m.06qd3 GPE NAM
party 273-277 m.0hzrnfb ORG NOM
SEOUL 302-306 m.0hsqf GPE NAM
Xinhua 317-322 m.01n13b ORG NAM
South Korea 328-338 m.06qd3 GPE NAM
Democratic United Party 358-380 m.0hzrnfb ORG NAM
leader 417-422 NIL00095 PER NOM
party 436-440 m.0hzrnfb ORG NOM
Moon Hee-sang 516-528 NIL00095 PER NAM
lawmaker 543-550 NIL00095 PER NOM
Roh Moo-hyun 599-610 m.08xh6c PER NAM
party 649-653 m.0hzrnfb ORG NOM
committee 667-675 NIL00767 ORG NOM
old 691-693 NIL00095 PER NOM
moderate 698-705 NIL00095 PER NOM
Lee Hae-chan 769-780 m.0c02l0 PER NAM
party 892-896 m.0hzrnfb ORG NOM
Park Ki-choon 908-920 NIL00012 PER NAM
leader 933-938 NIL00012 PER NOM
Park Jie-won 946-957 m.0j_5tn_ PER NAM

United Party on Wednesday elected a new interim leader to head the
party reeling from the narrow defeat in the presidential election
a month ago.

Moon Hee-sang, a five-term lawmaker who served as chief of staff
to late President Roh Moo-hyun, was elected to lead the
center-left party’s emergency committee.

The 67-year-old, a moderate without factional affiliations,
is filling the vacuum left by Lee Hae-chan, who was pressured
into resigning by calls for political reform before the
Dec. 19 election.

Last month, the party nominated Park Ki-choon as a floor leader
after Park Jie-won stepped down over the election loss.
</TEXT>
</DOC>

1. Name the entity with the NIL00095 identifier. (Use his name); 2 points

11

Table 5: An excerpt of the TAC corpus in the CoNLL format

Word Tag IOB Tag BIEOS
SEOUL I-GPE-NAM S-GPE-NAM
Jan. O O
9 O O
Xinhua
South
Korea
’s
main
opposition
Democratic
United
Party
on
Wednesday
elected
a
new
interim
leader

2. Check that the coreference chain of NIL00095 is correct and justify in a
few words why the mentions refer to a same person. 2 points

3. The name (NAM) and nominal (NOM) types designate entities that are
referred to, respectively, by their name or by a nominal mention. What is
the name of entity NIL00012 and his nominal mention? 2 points

4. List all the nominal mentions of NIL00095? 2 points

When available, the entity is labeled with an identifier from Freebase, for in-
stance, m.06qd3 is for South Korea and would correspond to Q884 in Wikidata.

2.3 Mention Detection
2.3.1 From TAC to CoNLL

In the assignments, you used the CoNLL format. You will manually annotate
the named entities of a fragment of the TAC corpus with this format. You will
first use the IOB scheme as in Table 2, where B mean between, and then a
second scheme called BIEOS. Table 5 shows this fragment, where you will use
the categories and type as tag suffix, for instance I-GPE-NAM or I-PER-NOM.

Understanding the Annotation.

1. Using the entities marked in Table 4, complete the IOB annotation of the
fragment in Table 5 (You can use the copy of the table in the Appendix).

12

For the annotation of South, you will only consider the CoNLL table, and
ignore the dashes in the XML text. 4 points

2. The tagging performance depends on the annotation. Results are different
when using IOB and IOB2, for instance. Yang et al. (2017) used the
BIEOS scheme2 that proved superior, where:

• S marks a mention that consists of a single word;

• B stands for the beginning of a mention when this mention has two
words or more;

• I, for inside, when this mention has three words or more;

• E, for end, the last word of a mention, when this mention has two
words or more;

• O for outside.

Complete the BIEOS annotation of the fragment in Table 5, third column
(You can use the copy of the table in the Appendix). 6 points

3. Try to justify why BIEOS gives better results than IOB or IOB2. 3 points

Converting the Annotation. In this part, you will loop over all the sen-
tences and all the words in a sentence and apply rules to convert the IOB
annotation into BIEOS. You rules will consider the context of the current word:
The word before and the word after.

1. Table 6 shows the tag conversion. It can be written using six rules.

(a) Convert from I to B: If ...

(b) Convert from I to I: If ...

(c) Convert from I to E: If ...

(d) etc.

Justify why O is always converted to O; 2 points

2. Justify why there is no B-X→ I-X and B-X→ E-X conversions (why these
conversions are impossible); 4 points

3. Let us consider the conversion of the I-X tags into B-X. The last word of
a sentence, if annotated with I-X, will never be converted into B-X. Why?

4. Write the rule converting the I-X tags into B-X using your own words.
This rule can be expressed using conditions based on the tags before and
after the current tag. You can break the rule considering two cases: This
is the first word of the sentence or a word inside the sentence. Think in
terms of tag suffixes. 6 points

2This scheme is also called BILOU, for Begin (B), Inside (I), Last (E), Outside (O), and
Unique (S).

13

Table 6: Conversion table

→ B I E O S
I X
O X X X X
B X X X

2.3.2 Programming

In this section, you will program a partial converter from IOB to BIEOS. The
complete top-level converter, iob2bieos(), considers all the cases:

We call the converters: I -> S, I -> B, I -> E, and B -> S
def iob2bieos(sentence_iob):

sentence_bieos = copy.deepcopy(sentence_iob)
for tag in [’chunk’, ’ner’]:

sentence_bieos = I2S(sentence_iob, sentence_bieos, tag)
sentence_bieos = I2B(sentence_iob, sentence_bieos, tag)
sentence_bieos = I2E(sentence_iob, sentence_bieos, tag)
sentence_bieos = B2S(sentence_iob, sentence_bieos, tag)

return sentence_bieos

You will restrict yourself to the I-X into B-X case. You will suppose that your
corpus is available as a list of lists, where each list corresponds to a sentence and
each word in this list is a dictionary with the CoNLL columns. The sentence in
Table 2, first part of the exam, will be stored as:

[{’form’: ’South’, ’pos’: ’JJ’, ’chunk’: ’I-NP’, ’ner’: ’I-MISC’},
{’form’: ’African’, ’pos’: ’JJ’, ’chunk’: ’I-NP’, ’ner’: ’I-MISC’},
{’form’: ’provincial’, ’pos’: ’JJ’, ’chunk’: ’I-NP’, ’ner’: ’O’},
{’form’: ’side’, ’pos’: ’NN’, ’chunk’: ’I-NP’, ’ner’: ’O’},
{’form’: ’Boland’, ’pos’: ’NNP’, ’chunk’: ’B-NP’, ’ner’: ’I-ORG’},
...
]

in a variable called train_dict. You will loop over the corpus with:

The loop over the corpus
train_dict_bieos = []

for sentence in train_dict:
new_sentence = iob2bieos(sentence)
train_dict_bieos.append(new_sentence)

1. Write the function that converts the IOB tags of a sentence in BIEOS tags
for both the chunks and the named entity tags restricted to the I-X →
B-X case: i.e. you will only write an I2B() function.

This function consists of a loop over the words and one or more if state-
ments with and and or connectors. Replace the <FILL IN CODE> place-
holder with your code in the function below. 10 points

14

def I2B(sentence_iob, sentence_bieos, tag=’ner’):
if len(sentence_iob) == 1:

return sentence_bieos

<FILL IN CODE>
return sentence_bieos

2.3.3 Understanding the Architecture of the Named Entity Recog-
nition Module

Yang et al. (2017) used a neural network architecture to recognize named entities
that you will replicate with a simpler logistic regression classifier.

1. Read Sect. 3 and tell the name of the classifier the authors used? 2 points

2. In the third assignment, you applied logistic regression from left to right.
Is it the case for their classifier? Describe its structure. 4 points

3. As features Yang et al. (2017) used the words, the characters, the parts of
speech, and NER tags obtained from another tagger (coreNLP). Instead of
using the words as is, the authors applied a dimension reduction, similar
to a principal component analysis, to the one-hot encoded words so that
one-hot vectors are reduced to a dimension of 100. Why do you think this
dimension reduction is interesting? 3 points

4. On top of this classifier, the authors used conditional random fields that
take into account the tag transitions and try to optimize them. Why do
you think this is interesting? 3 points

2.3.4 Programming

In this section, you will program a named entity recognizer using a stacked
logistic regression. You will train two classifiers: The first one will proceed from
left to right and the second one, from right to left. You will use a window of
three words centered on the current word. Your features will be the word forms
and the previously assigned tag:

x = (w−1, w0, w1, ner−1)
y = ner0

You will use padding symbols for the line before the first word and the line after
the last word.

1. Write the three first lines of the Xlr matrix and ylr vector using the data
in Table 5, when proceeding from left to right; 3 points

2. Write the three first lines of the Xrl matrix and yrl vector using the data
in Table 5, when proceeding from right to left; 3 points

3. You will suppose the corpus with the BIOES annotation is stored in a
variable called: train_dict_bieos.
Write an extract_features() function to create the X matrices and y
vectors from train_dict_bieos. To build Xrl and yrl, you just need to
reverse the sentences. Your program should produce two matrices and two
vectors. 9 points

15

4. Write the code to train your two models. 4 points

5. Write a predict() function to carry out the prediction. The input will
be a sentence represented as a list of dictionaries. Each dictionary will
contain a word, like:

{’form’: ’provincial’, ’pos’: ’JJ’, ’chunk’: ’I-NP’, ’ner’: ’O’},

In addition to predict the NER tag, you will extract the probability of this
prediction. This is done by calling classifier.predict_proba() instead
of classifier.predict(). The classifier.predict_proba() method
returns the prediction and it probability in a tuple3. 9 points
For each word, your predict() function will add the predicted tag, ner_pred,
and its probability, proba, as for instance:

{’form’: ’provincial’, ’pos’: ’JJ’, ’chunk’: ’I-NP’, ’ner’: ’O’,
’ner_pred’: ’O’, ’proba’: 0.986},

The predict() function will return the modified sentence.

6. Applying your classifiers will result into two predictions for each word:
The first one from the left-to-right direction and the second one from the
right-to-left. How will you merge them? 3 points

2.4 Entity Linking
You will now link the named entities to unique identifiers. Let us suppose that
you NER has recognized the mention EU as a named entity, the candidates can
be universities, at least 5:

1. Edinburgh University, Scotland

2. Ehime University, Matsuyama, Ehime, Japan

3. Eastern University (United States), Pennsylvania, United States

4. Elon University, North Carolina, United States

5. Emory University, Atlanta, United States

as well as European Union. In this section, you will generate the candidates
and use a baseline technique to rank them.

2.4.1 Candidate Generation

Understanding the Generation

1. Read the introduction to Sect. 4 and Sect. 4.1 of Yang et al. (2017). What
resources are they using to find the possible names of an entity? 2 points

2. You will extract the entity candidates from Wikipedia using the wikilinks.
The wikilinks are the clickable words in a Wikipedia article. When you
click on the phrase United States in Fig. 3, for instance, you will move to
the target of this link: The article on the United States. We will consider
that each article in Wikipedia corresponds to an entity, for instance the
article United States is equivalent to the entity United States.

3In reality, this procedure is more complex in sklearn. We simplify it for the examination.

16

Figure 3: Supreme Court of the United States

In the source text of wikipedia, the wikilinks are delimited by square
brackets as in this (simplified) example below from the article on the
Supreme Court of the United States:

The ”’Supreme Court of the United States”’ is the [[Supreme
court|highest court]] in the [[Federal judiciary of the
United States|federal judiciary]] of the [[United States]].
Established pursuant to [[Article Three of the United
States Constitution|Article III]] of the [[United States
Constitution|U.S. Constitution]] in 1789, it has [[original
jurisdiction]] over a small range of cases, such as suits
between two or more [[U.S. state|states]], and those involving
ambassadors.

Sometimes the link and the clickable words are the same as in [[United States]].
Some links consist of two parts as:

[[Federal judiciary of the United States|federal judiciary]]

where the first part is the link, a Wikipedia page whose title is Federal
judiciary of the United States and the second part is the text that shows
on the page, federal judiciary, see Fig. 3.
In a construct like [[link|label]], what part corresponds to the mention
and what part to the entity? 2 points

3. In a construct like [[link]], how would you extract the mention and the
entity? 2 points

Programming. You will now extract the mention-entity pairs using regular
expressions. You will suppose the page is available in a variable call document
that only contains the text and the wikilink markup.

1. Write a regular expression that matches the [[link]] patterns and stores
the values of the links; 5 points

Applying the code:

17

link_re1 = ...
entities = [match.group(1) for match

in re.finditer(link_re1, document)]

to the excerpt above should result in

[’United States’, ’original jurisdiction’]

2. Write a regular expression that matches [[link|label]] patterns and
stores the values of the link and of the label; Applying the code: 8 points

link_re2 =...
entity_mentions = [(match.group(1), match.group(2)) for match

in re.finditer(link_re2, document)]

to the excerpt above should result in

[(’Supreme court’, ’highest court’),
(’Federal judiciary of the United States’, ’federal judiciary’),
(’Article Three of the United States Constitution’, ’Article III’),
(’United States Constitution’, ’U.S. Constitution’),
(’U.S. state’, ’states’)]

3. Write the code to convert the result of the first regular expression so that
it is identical to the second one. Concatenate the two lists. 2 points

2.4.2 Candidate Ranking

Given the mention of a named entity in a text, you will rank the entities using
the list of mention-entity pairs you have collected from the corpus. As baseline,
we will simply associate the entity with the highest count to the mention.

1. This simple ranking method is equivalent to a feature used by Yang et al.
(2017). Which one? (Give the number); 3 points

2. Write a function that takes the variable entity_mentions as input and
outputs a dictionary, where the keys are the mentions and the values,
dictionaries, where the keys are the entities and the values their counts. 10 points

3. Finally, having a text where your NER system has recognized all mentions
of named entities, how would you link them to entity identifiers? We will
assume that the identifiers are the Wikipedia page titles. 5 points

References
Ji, H., Pan, X., Zhang, B., Nothman, J., Mayfield, J., McNamee, P., and
Costello, C. (2017). Overview of TAC-KBP2017 13 languages entity discov-
ery and linking. In Proceedings of the Tenth Text Analysis Conference (TAC
2017), Gaithersburg, Maryland.

18

Pradhan, S., Ramshaw, L., Marcus, M., Palmer, M., Weischedel, R., and Xue,
N. (2011). CoNLL-2011 shared task: Modeling unrestricted coreference in
OntoNotes. In Proceedings of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task, pages 1–27, Portland, Oregon. As-
sociation for Computational Linguistics.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition. In Pro-
ceedings of CoNLL-2003, pages 142–147, Edmonton.

Yang, T., Du, D., and Zhang, F. (2017). The TAI system for trilingual entity
discovery and linking track in TAC KBP 2017. In Proceedings of the Tenth
Text Analysis Conference (TAC 2017), Gaithersburg, Maryland.

19

3 Appendix
You can use the tables below in your exam papers. Just detach them and fill
them in. Insert them with your sheets. Do not forget to write your exam code
on the sheets.

s 6 7 6
e 5 6 5
l 4 5 4 3
b 3 4 3 2 3
a 2 3 2 3 4 5
c 1 2 3 4 5 6
start 0 1 2 3 4 5

start t a b l e

20

Word Tag IOB Tag BIEOS
SEOUL I-GPE-NAM S-GPE-NAM
Jan. O O
9 O O
Xinhua
South
Korea
’s
main
opposition
Democratic
United
Party
on
Wednesday
elected
a
new
interim
leader

21

	Closed Book Part: Questions
	Problem
	Analyzing the Papers
	Understanding the Corpus
	Mention Detection
	From TAC to CoNLL
	Programming
	Understanding the Architecture of the Named Entity Recognition Module
	Programming

	Entity Linking
	Candidate Generation
	Candidate Ranking

	Appendix

