
EDAN20
Final Examination

Pierre Nugues

October 28, 2017

The examination is worth 288 points. The distribution of points is indicated
with the questions. You need 50% to have a mark of 4 and 65% to have a 5.

1 Closed Book Part: Questions
In this part, no document is allowed. It is worth 130 points.

Chapter 1. Cite three applications that use natural language processing to
some extent. 3 points

Chapter 1. Annotate each word of the sentence:

Elon Musk unveils some new twists on his plan for Mars1

with its part of speech. You will use parts of speech you learned at school:
common noun, proper noun, verb, adjective, preposition. Use the deter-
miner part of speech to replace the more traditional terms: indefinite ad-
jectives and possessive adjectives (sometimes called possessive pronouns)

3 points

Chapter 1. Draw the graph of the sentence Elon Musk unveils some new twists
using dependency relations. You will notably identify the subject and the
object. 4 points

Chapter 1. Identify the proper nouns (or named entities) in the sentence:

Elon Musk unveils some new twists on his plan for Mars

and describe what entity linking is on this example and why it can be
difficult. 8 points

Chapter 1. Represent the sentence Elon Musk unveils some new twists on his
plan for Mars with a predicate–argument structure. 4 points

Chapter 2. Describe what a concordance is and give all the case-sensitive
concordances of the string kaolin with one word before and one word after
in the text below: 3 points

1Retrieved on September 29, 2017 from www.economist.com

1

www.economist.com

Dom i Kaolinmålet: Ingen brytning av den vita leran i
Billinge
Svenska Kaolin får nej på sin ansökan som berör Eslöv, Svalöv
och Klippan. Enligt Mark- och miljödomstolen är kaolinbryt-
ningen i Billinge inte förenlig med miljöbalken.
I somras kompletterade Svenska Kaolin sin ansökan om kaolin-
brytning med en omarbetad miljökonsekvensbeskrivning. Mark-
och miljödomstolens godkänner den uppdaterade versionen och
anser att den duger som grundval för att pröva ansökan. Men
den samlade bedömningen är fortfarande att kaolinbrytningen
inte är förenlig med miljöbalkens krav. Därför blir det inget
miljötillstånd.
Kaolinfyndigheten vid Billinge fälad i norra delen av Eslövs
kommun upptäcktes på 1980-talet. En första ansökan om att
bryta kaolin här lämnades in 1994. Svenska Kaolin AB har hål-
lit fast vid planerna trots tidigare avslag och ansökte på nytt
2014. Ansökan gäller brytning av högst 20 miljoner ton miner-
alråvara under 20 år.
Sydsvenskan.se, Retrieved October 24, 2017. Author Birgitta
Johansson

Please note that the hyphens, as in kaolinbryt-ning, were added by the
Latex text processor and should not be counted as real characters.

Chapter 2. Identify what the regular expressions in the list below match in
the text above (identify all the matches and just write one word before
and after, or write no match if there is no match): 15 points

List of case-sensitive regular expressions:

1. Kaolin

2. Kaolin\s

3. kaolin\p{L}*

4. kaolin\p{L}?

5. kaolin\p{L}+

6. kaolin\p{L}{10}

7. kaolin\P{L}

8. [Kk]aolin\s

9. ^\p{L} with the multiline option

10. [A-Z](.)(.)\2\1

Chapter 2. What will be the output of the command: 3 points

tr -cs ’0-9’ ’\n’ <text

when applied to the text above (Dom i Kaolinmålet: Ingen brytning av
den vita leran i Billinge).

2

Chapter 2. Write a simple regular expression that matches all the words of a
text consisting of Latin unaccented characters only: lower and uppercase.

1 point

You will either list all the letters of the Latin alphabet explicitly or use a
range.

Chapter 2. Write a regular expression that matches all the words in a text
that include at least one of the Swedish letters: åäö. You will assume that 8 points
the text is in lowercase.

You will proceed in two steps:

• First, write a regular expression, where you match all the words that
include one Swedish letter. In the phrase:

svenska kaolin får nej på sin ansökan,

you will match the words: får, på, and ansökan. In this first step,
your regular expression will probably also match word fragments in
words with more than one Swedish letter.

• In a second step, modify the regular expression to repeat the match
so that you detect the words with multiple Swedish letters properly.
In the sentence:

därför blir det inget miljötillstånd,

this will correspond to därför and miljötillstånd.

With the program:

regex = ?? # your regex
string1 = ’Svenska Kaolin får nej på sin ansökan’.lower()
string2 = ’Därför blir det inget miljötillstånd’.lower()

select string1 or string2
matches = [match.group() for match in re.finditer(regex, string)]
print(matches)

your regex should produce :

[’får’, ’på’, ’ansökan’]
[’därför’, ’miljötillstånd’]

Chapter 2. You will write a manual spell checker for Swedish with the word
koalin (notice the typo). Spell checkers typically use four edit operations:
deletions, transpositions, substitutions, and insertion. 8 points

1. Generate all the words resulting from a character deletion for this
word;

2. Generate all the words resulting from a transposition;

3. Generate all the words resulting from a substitution; You will use an
alphabet limited to one single symbol, λ, to carry out the substitu-
tions;

3

4. Generate all the words resulting from an insertion; You will an al-
phabet limited to one single symbol, λ, to carry out the insertions.

Chapter 2. For the word above, koalin, how many candidates do you obtain,
supposing your alphabet has 26 unaccented letters and three Swedish let-
ters? 4 points

How would you select and rank the candidates?

Chapter 3. What do the \p{Greek}+, \p{Latin}+, and \p{Hiragana}+ Uni-
code regular expressions match? Please, provide one answer for each reg- 3 points
ular expression.

Chapter 4. Describe what a supervised classifier is. What is the typical no-
tation of input matrix of a classifier (predictors) and output vector (re-
sponse). Give the name of two classifiers: The one you used for the
assignments and a second one. 4 points

Chapter 5. Give the probabilistic language model of the sentence:

Därför blir det inget miljötillstånd

using no n-gram approximation. You will ignore possible start and end of
sentence symbols. 2 points

Chapter 5. Using a unigram approximation, give the probabilistic language
model of the sentence:

Därför blir det inget miljötillstånd

You will ignore possible start and end of sentence symbols. 2 points

Chapter 5. Using a bigram approximation, give the probabilistic model of the
sentence:

Därför blir det inget miljötillstånd

You should have exactly the same number of terms as in the previous
question. You can include a start of sentence symbol or not. 2 points

Chapter 5. Using the counts in Table 1, you will compute the probability of
the sentence:

Därför blir det inget miljötillstånd

using a unigram and a bigram approximations. You will use fractions to
represent the terms in the product and you will not try to reduce them,
i.e. you will write 1

3 and not 0.33. 8 points

You may need the total number of words in the .se web domain. You
will interpolate it from the count of words in the Selma corpus that totals
about 1 million words with 22,000 occurrences of det. You will justify your
interpolation with regard to Table 1.

Chapter 5. Describe the Laplace method to estimate a bigram probability and
apply it to the sentence: 2 points

4

Table 1: Word and bigram counts retrieved from Google.com on October 25,
2017 with the search limited to the Swedish domain (site:se).

Words Unigram counts Bigrams Bigram counts
därför 6 270 000
blir 6 370 000 därför blir 629 000
det 247 000 000 blir det 3 900 000
inget 5 670 000 det inget 1 740 000
miljötillstånd 54 700 inget miljötillstånd 151
miljötilstånd 23 inget miljötilstånd 0

Därför blir det inget miljötilstånd

For the exchange students: Please notice the typo in miljötilstånd. The
correct spelling is: miljötillstånd

Chapter 5. Describe the simple back off method to estimate a bigram proba-
bility and apply it to the sentence:

Därför blir det inget miljötilstånd

You will use the same back off as in the labs. 2 points
Please notice the typo in miljötilstånd.

Chapter 5. Supposing the word miljötilstånd (please note the typo) is not in
your dictionary, how can you use unigram and then bigram probabilities
to rank the candidates produced by edit operations. 2 points
Justify in which cases bigram probabilities can produce better results than
unigrams. Think of the example I gave with the word acress during the
lectures.

Chapter 8. In this exercise, you will describe how to build a simple part-of-
speech tagger using a linear classifier. You will use the example in Table 2.

1. Describe what the training step is and what you would use as data
to carry it out (how would you obtain it?). Describe how you would
build the input matrix (predictors) and output (response); 3 points

2. Build this input matrix using features consisting of the current word,
the previous word, and the next word. You will write the five first
lines of the matrix and output vector. You will only use symbols:
words and parts of speech for this; 3 points

3. Describe what the test or evaluation step is and what you would use
as data; 3 points

4. Name the two scikit-learn methods you would use to carry out these
two steps (training and prediction); 2 points

5. The training step only accepts numerical matrices. Describe what a
vectorization (or one-hot encoding) is and how you would transform
a matrix of symbols (strings) into a matrix of numbers. Name the
scikit-learn methods for it. 4 points

5

6. Name the scikit-learn class for this. 1 point

Table 2: An excerpt from the Penn Treebank with the part-of-speech annotation
of the sentence: The luxury auto maker last year sold 1,214 cars in the U.S.

Index Words Parts of speech
1 The DT
2 luxury NN
3 auto NN
4 maker NN
5 last JJ
6 year NN
7 sold VBD
8 1,214 CD
9 cars NNS
10 in IN
11 the DT
12 U.S. NNP

Chapter 13. Represent graphically the dependency graphs of the two following
sentences:

Jag tror på det.

and

Vad beror detta på?

in Tables 3 and 4. 5 points

What is the main difference between the two graphs?

Table 3: Dependency analysis of Jag tror på det.

Index Words Head
1 Jag 2
2 tror 0
3 på 2
4 det 3
5 . 2

Chapter 13. Define the four actions – shift, reduce, left-arc, and right-arc –
used in Nivre’s parser to parse a dependency graph and create arcs. 8 points

Chapter 13. Using gold-standard parsing and Nivre’s parser, parse the sen-
tence:

Jag tror på det.

6

Table 4: Dependency analysis of Vad beror detta på?

Index Words Head
1 Vad 4
2 beror 0
3 detta 2
4 på 2
5 ? 2

and give the sequence of actions to complete the parse. You will represent
graphically the stack and the queue with the words they contain. 5 points

Chapter 13. Using gold-standard parsing and Nivre’s parser, try to parse the
sentence

Vad beror detta på?

and give the sequence of actions until you fail. Explain why the parser
fails. 5 points

7

2 Problem
In this part, documents are allowed. It is worth 158 points.

Transition-based parsing is a technique to parse dependencies. It uses a
queue of input words, a stack, and a set of actions to apply to these data
structures. As course assignments, you have implemented such a dependency
parser.

In this part of the examination, you will design and program a constituent
parser using shift and reduce actions and the same data structure. You will
follow the paper by Sagae and Lavie (2005) for the implementation. This parser
can only create binary trees: Trees where nodes have at most two children. In
the last exercise, you will write a program to binarize any kind of tree.

The paper by Sagae and Lavie (2005) has started a line of similar systems
that improved the parsing performance over the years. Liu and Zhang (2017)
is a recent example that defines the current state of the art. This second paper
is only provided for information and will not be used for programming.

As programming language, you can use Python (strongly preferred), Java,
Perl, or Prolog. You will focus on the program structure and not on the syntactic
details. You can ignore the Python modules, Java packages or imports for
instance.

2.1 Shift-Reduce Parsing
2.1.1 Analyzing the Papers

1. Read the Abstract and Introduction sections of Sagae and Lavie (2005)
and the Abstract of Liu and Zhang (2017) and describe what they claim
are the advantages of shift-reduce parsing over other techniques2. 8 points

2. Find in both texts the parser actions and name them. You just need to
name these actions, you will analyze them later. 4 points

3. The parser by Liu and Zhang (2017) has two more actions than that of
Sagae and Lavie (2005). Name these actions. 2 points

2.1.2 Manual Parsing

In this section, you will parse manually the sentences The waiter brought the
meal and The waiter slept. Figures 1 and 2 show the parse trees you should
obtain.

To understand the algorithm proposed by Sagae and Lavie (2005), read first
the Algorithm Outline section.

1. During the lectures and in the textbook (Nugues, 2014), we have studied
shift-reduce parsing. What are the two main differences between the algo-
rithm in Sagae and Lavie (2005, Sect. Algorithm Outline) and the shift-
reduce parsing sequence from the textbook and the course slides shown in
Table 5. 4 points

Think of the data in the input sequence and the types of reduce actions.
2The phrase transition-based parsing is a synonym of shift-reduce parsing.

8

S

V P

NP

Noun

meal

Det

the

V erb

brought

NP

Noun

waiter

Det

TheStart

Figure 1: Bottom-up parsing. The parser starts with the words and builds the
syntactic structure up to the top node

S

V P

V erb

slept

NP

Noun

waiter

Det

The

Figure 2: Parse tree of The waiter slept

2. Sagae and Lavie (2005) used two types of reduce actions, reduce_unary(X)
(abridged in ru(X)) and reduce_binary(X) (abridged rb(X)). Here, you 8 points
will ignore the left and right directions of the head.

Replace the reduce actions in Table 5 by ru(X) or rb(X) with the correct
value of X.

To help you start, at iteration 2, Reduce should be replaced with ru(det)
and at iteration 5, Reduce should be rb(np).

3. Using the parse tree in Fig. 2, determine the action sequence needed to
parse the sentence The waiter slept. You will present your results as in
Table 5 with the actions ru(X) and rb(X). 6 points

2.1.3 Building a Parse Tree From an Action Sequence

You will now write a parser that takes a sentence and an action sequence as
input and produces a parse tree as output.

• You will store the queue, queue, and the stack, stack, as lists, for instance:

[’the’, ’waiter’, ’brought’, ’the’, ’meal’]

• You will store the action sequences, transitions, as lists, for instance:

[[’sh’], [’ru’, ’det’], [’sh’], [’ru’, ’noun’], [’rb’, ’np’]]

9

Table 5: Steps of the shift–reduce algorithm to parse the waiter brought the meal.
The Python quotes have been omitted to save space. After Nugues (2014)

It. Stack S/R Word list
0 [the, waiter, brought, the, meal]
1 [the] Shift [waiter, brought, the, meal]
2 [det] Reduce [waiter, brought, the, meal]
3 [det, waiter] Shift [brought, the, meal]
4 [det, noun] Reduce [brought, the, meal]
5 [np] Reduce [brought, the, meal]
6 [np, brought] Shift [the, meal]
7 [np, v] Reduce [the, meal]
8 [np, v, the] Shift [meal]
9 [np, v, det] Reduce [meal]
10 [np, v, det, meal] Shift []
11 [np, v, det, n] Reduce []
12 [np, v, np] Reduce []
13 [np, vp] Reduce []
14 [s] Reduce []

to represent the sequence: [sh, ru(det), sh, ru(noun), rb(np)].

• Your parser will output a tree that you will represent as Python recursive
lists, lists within lists, such as

parse_tree = \
[’s’,
[’np’, [’det’, ’the’], [’noun’, ’waiter’]],
[’vp’,
[’verb’, ’brought’],
[’np’, [’det’, ’the’], [’noun’, ’meal’]]]]

for the parse tree in Fig. 1. The first item of a list is the node label,
node_label and the rest, the children, children, all this recursive.
We have:

print(parse_tree[0]) # the node label
s

and

print(parse_tree[1:]) # the tree
[[’np’, [’det’, ’the’], [’noun’, ’waiter’]],
[’vp’,

[’verb’, ’brought’],
[’np’, [’det’, ’the’], [’noun’, ’meal’]]]]

1. Given the phrase The waiter and the action sequence:

10

[[’sh’], [’ru’, ’det’], [’sh’], [’ru’, ’noun’], [’rb’, ’np’]]

draw the stack and the queue for each action (five in total), as well as
the resulting parse trees on the top of the stack after each reduce action
(three parse trees). 8 points

You will need to complement the data structure storing the items of the
stack so that each reduce builds a partial tree. To help you, after the first
reduce, the top of the stack should be [[’det’, ’the’]] and at the end
of the parse, the top of the stack must be:

[[’np’, [’det’, ’the’], [’noun’, ’waiter’]]]

2. Program the shift(stack, queue) function. 10 points

3. Program the reduce_unary(stack, X) function. 12 points

4. Program the reduce_binary(stack, X) function. 16 points

5. Program a ’__main__’ block that processes the input and produces the
output. 10 points

2.1.4 Gold-Standard Parsing

Normally, when you parse a sentence, you do not know the action sequence. In
the assignments, sa well as in in Sagae and Lavie (2005), you determined the
actions using a classifier. To train such a classifier, you associated a dependency
graph with an action sequence. This is called gold-standard parsing.

You will now program this function, oracle(), so that given a constituent
parse tree as input, the oracle outputs an action sequence, transitions.

1. Using the tree in Fig. 2, annotate each node and leave with the action
corresponding to its creation or move in the stack, either rb(X), ru(X),
or sh. (You will redraw the tree on your exam paper and mark each node
with rb(X), ru(X), or sh). 8 points

2. Compare this annotated tree with the sequence you obtained in Sect. 2.1.2.
How can you obtain the action sequence from a tree traversal? The pos-
sibilities are preorder, inorder, or postorder. 6 points

3. Write a gold-standard parser that takes a parse tree in the form of list as
input and outputs an action sequence. 18 points

You can use the code skeleton below and complete the FILL IN parts:

transitions = []
def oracle(parse_tree):

"""
The oracle predicts the transition sequence from a parse tree
"""
if len(parse_tree) == 0:

return
if type(parse_tree[0]) == str and type(parse_tree[1]) == str:

We have reached the words

11

transitions.append(’sh’)
transitions.append([’ru’, parse_tree[0]])
return

if len(parse_tree[1:]) == 1:
FILL IN

if len(parse_tree[1:]) == 2:
FILL IN

if len(parse_tree[1:]) > 2:
print(’Not a binary tree’)
return

Given the input parse tree:

tree = [’S’,
[’NP’, [’DT’, ’the’], [’NN’, ’waiter’]],
[’VP’,
[’VBD’, ’brought’],
[’NP’, [’DT’, ’the’], [’NN’, ’meal’]]]]

your oracle should output the following transition sequence:

[’sh’, [’ru’, [’DT’, ’the’]], ’sh’, [’ru’, [’NN’, ’waiter’]],
[’rb’, [’NP’, [’DT’, ’NN’]]], ’sh’, [’ru’, [’VBD’, ’brought’]],
’sh’, [’ru’, [’DT’, ’the’]], ’sh’, [’ru’, [’NN’, ’meal’]],
[’rb’, [’NP’, [’DT’, ’NN’]]], [’rb’, [’VP’, [’VBD’, ’NP’]]],
[’rb’, [’S’, [’NP’, ’VP’]]]]

2.1.5 Training a Classifier

Now that you have the programs, describe the method to train a classifier and
build a parser? What could be the features? 10 points

2.2 Binarizing Trees
Sagae and Lavie (2005)’s parser only accepts binary trees. In most treebanks,
nodes can have more than two children. This means that we have to binarize
the trees before applying a gold-standard parsing. In addition, as the parser
only produces binary trees, this also means that we will have to “unbinarize”
the parsed sentences.

Examine Figure 1 in Sagae and Lavie (2005), where you will ignore the
phrase heads. The tree is said to be right-binarized because when a node has
more than two children, they created recursively subnodes with the children to
the right, for example, (a b c) is transformed into (a (b c)) and (a b c e)
into (a (b (c e))).

In this exercise, you will write a right binarization program, where the input
will be a parse tree: parse_tree consisting of recursive lists, where we will have:

node_label = parse_tree[0]
children = parse_tree[1:]

12

and the output will be a binarized tree with the same structure and len(children) < 2
for all the nodes in the tree.

To make it easier to find a solution, we can decompose the program in the
four steps below. Should you want not to follow these suggested steps, please
feel free to do so.

1. Write a function, binarize(), that traverses a parse tree, possibly non-
binary. The function will be recursive and do nothing else than traverse
the tree; 6 points

2. Modify binarize() so that it prints the nodes that have more than two
children. You will need a condition of the type: 6 points

if children and len(children) > 2:
FILL IN

3. In the conditional block where a node has more than two children, create
a new node, new_node that brackets the nodes to the right and replace
the right children after the first one with this new node. 6 points

For instance, in the tree

[’NP’, [’DT’, ’the’], [’JJ’, ’diligent’], [’NN’, ’waiter’]]

you would have

new_node = [’NP’, [’JJ’, ’diligent’], [’NN’, ’waiter’]]

where we reuse the node label, here NP, and we woud binarize the tree as:

[’NP’,
[’DT’, ’the’],
[’NP’,

[’JJ’, ’diligent’], [’NN’, ’waiter’]]]

4. Finally, modify the recursive call to binarize() so that you build com-
plete binary trees and your program is complete. 10 points

References
Liu, J. and Zhang, Y. (2017). Shift-reduce constituent parsing with neural looka-
head features. Transactions of the Association for Computational Linguistics,
5:45–48.

Nugues, P. M. (2014). Language Processing with Perl and Prolog. Theories,
Implementation, and Application. Springer Verlag, Berlin Heidelberg New
York, second edition.

Sagae, K. and Lavie, A. (2005). A classifier-based parser with linear run-time
complexity. In Proceedings of the Ninth International Workshop on Parsing
Technology, Parsing ’05, pages 125–132, Stroudsburg, PA, USA. Association
for Computational Linguistics.

13

	Closed Book Part: Questions
	Problem
	Shift-Reduce Parsing
	Analyzing the Papers
	Manual Parsing
	Building a Parse Tree From an Action Sequence
	Gold-Standard Parsing
	Training a Classifier

	Binarizing Trees

