
EDAN20
Final Examination

Pierre Nugues

October 26, 2016

The examination is worth 264 points. The distribution of points is indicated
with the questions. You need 50% to have a mark of 4 and 65% to have a 5.

1 Closed Book Part: Questions
In this part, no document is allowed. It is worth 120 points.

Chapter 1. Cite three applications that use natural language processing to
some extent. 3 points

Chapter 1. Annotate each word of the sentence:

Regulator defends tough bank rules1

with its part of speech. You will use parts of speech you learned at school.
3 points

Chapter 1. Draw the graph of the sentence Regulator defends tough bank rules
using dependency relations. You will notably identify the subject and the
object. 4 points

Chapter 1. Identify the proper nouns (or named entities) in the sentence:

Gibbon wrote a book on the Roman Empire

and describe what entity linking is on this example. 8 points

Chapter 1. Represent the sentence Gibbon wrote a book on the Roman Empire
with a predicate–argument structure. 4 points

Chapter 2. Describe what a concordance is and give all the case-sensitive con-
cordances of the string Sagohuset : 3 points

Sagohuset får fortsätta att leta lokaler - trettioårig jakt är inte
över
I över trettio år har Teater Sagohuset kämpat för att få en per-
manent lokal i Lund. Förslaget att skrota idén om Folkparken

1Retrieved on October 12, 2016 from www.ft.com

1

www.ft.com

som teaterlokal förvånar därför inte Margareta Larson, konst-
närlig ledare på Sagohuset.
Elverket. Lokstallarna. Observatoriet och nu Folkparken.
– Vi har gått igenom alla byggnader i Lund där vi skulle kunna
vara. Men mattan dras hela tiden undan för oss, säger Mar-
gareta Larson. Till våren rivs Sagohuset på Revingegatan för
att ge plats åt bostäder och en förskola som kräver parkyta. Det
innebär att teatern står utan scen från den 12 maj 2017.
Förhoppningen var att Sagohuset skulle kunna flytta in i Lunds
gamla observatorium vid Stadsparken. Diskussioner fördes mel-
lan teatern och Lundafastigheter samt länsstyrelsen.
Sydsvenskan.se, Retrieved October 12, 2016. Author Görel Svahn

Chapter 2. Identify what the regular expressions in the list below will match
in the text above (identify all the matches or write no match if there is no
match): 15 points

List of regular expressions:

1. Lunds?

2. (Lunds)+

3. huset.

4. huset\.

5. [A-Za-z]+parken

6. [A-Za-z]+slaget

7. \p{L}+slaget

8. \p{L}{3}slaget

9. \p{L}{4,}slaget

10. (..)g\1

Chapter 2. Write a generic regular expression that matches the date in the
text as well as similar dates. 2 points

Chapter 2. Spell checkers identify words that are not in their dictionaries and
suggest corrections to unknown words. They typically use four operations:
deletions, insertion, substitutions, and transpositions. 15 points

Taking example from Peter Norvig’s spell checker in Python or using your
own ideas, answer these questions:

1. How would you collect a dictionary of correctly spelled words?

2. If a word is not in your dictionary, supposedly misspelled, how would
you generate candidates that are corrections?

3. What is the edit operation that generates the most candidates? And
how many given an alphabet of 26 lowercase letters?

4. What is the edit operation that generates the least candidates? And
how many?

2

5. If more than one candidate is a correct word, how would you select
the best candidate?

You will only consider lowercase unaccented characters.

Chapter 3. Describe what a Unicode block is and give an example of a block.
2 points

Chapter 4. Describe what a classifier is. What is the input of a classifier
(predictors) and output (response). Give an example. 4 points

Chapter 4. Describe what is a vectorizing operation applied to symbolic fea-
tures (or one hot encoding). Why do you need such a vectorizing with
scikit-learn? 4 points

Chapter 5. What is a tokenization? And why can it be difficult? Give an
example. 3 points

Chapter 5. In the context of the tokenization of a text, write a regular ex-
pression that finds all the words consisting a sequence of letters, including
accented letters. You can use the regular expression you used in the labs. 3 points

Chapter 5. Document indexers identify all the words of the documents they
index. Using the index, one can retrieve a document by the words it con-
tains. Once indexed, bag-of-word representations are often used to repre-
sent the documents of a collection in classification for example. Table 1
shows an incomplete representation of the two documents

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

using bag-of-words.

Table 1: The vectors representing the two documents. The words have been
normalized in lowercase letters. You will have to fill in the coordinates

D#\ Words america chrysler in investments latin major mexico new plans
1
2

1. Fill in the values in Table 1 with coordinates corresponding to the
term frequencies (TF) in the two documents. 4 points

2. Fill in the values in the table with coordinates corresponding to the
logarithm base 10 of the inverted document frequency (IDF). 4 points

3. Fill in the values in Table 1 with coordinates corresponding the prod-
uct TF · IDF . 2 points

4. Define the cosine similarity of two vectors. 4 points

5. Compute the cosine similarity of the two documents. 2 points

3

Table 2: An excerpt from the CoNLL 2000 corpus.

Words Parts of speech
He PRP
reckons VBZ
the DT
current JJ
account NN
deficit NN
will MD
narrow VB
to TO
only RB
#
1.8 CD
billion CD
in IN
September NNP
. .

Chapter 10. Identify all the noun phrases in the sentence in Table 2. 4 points

Chapter 10. Precision and recall are two common measures of performance in
NLP. 4 points

1. Define precision;

2. Define recall.

Chapter 10. Let us suppose an automatic chunker that would extract three
noun phrases from the sentence in Table 2: he, reckons, and # 1.8 billion.
What would be its recall and precision. 4 points

Chapter 15. The CoNLL 2008 format is a syntactic and semantic annotation
format. It uses columns to describe the index, words, lemmas, parts of
speech, dependency structure, and finally the semantic predicates and
arguments of a sentence. We will use a simplified version of it in this
examination. The (simplified) annotation of the sentence

The SEC will probably vote on the proposal early next year, he
said.

is shown in Table 3.

In this question, you will draw two graphs representing respectively the
syntactic and semantic structures. You will draw the syntactic graph
above the sentence and the semantic one under.

Syntactic graph: The first six columns are identical to the format used
in dependency parsing and represent the dependency graph. The
third column is the lemma.

4

Table 3: Simplified annotation of the sentence The SEC will probably vote on
the proposal early next year, he said. in the CoNLL 2008 corpus

ID FORM LEMMA POS HEAD DEPREL PRED ARG ARG
1 The the DT 2 NMOD _ _ _
2 SEC sec NNP 3 SBJ _ A0 _
3 will will MD 14 OBJ _ AM-MOD A1
4 probably probably RB 3 ADV _ AM-MNR _
5 vote vote VB 3 VC vote.01 _ _
6 on on IN 5 ADV _ A1 _
7 the the DT 8 NMOD _ _ _
8 proposal proposal NN 6 PMOD _ _ _
9 early early RB 11 NMOD _ _ _
10 next next JJ 11 NMOD _ _ _
11 year year NN 5 TMP _ AM-TMP _
12 , , , 14 P _ _ _
13 he he PRP 14 SBJ _ _ A0
14 said say VBD 0 ROOT say.01 _ _
15 . . . 14 P _ _ _

• Represent graphically (draw) these syntactic dependencies. 3 points
• Is the graph projective? 1 point

Semantic graph: The rest of the columns corresponds to the predicates
and their arguments:

• The seventh column indicates the predicates. How many predi-
cates are there in this sentence? Underline the predicates in the
sentence. 1 point

• The columns to the right of the predicates represent their re-
spective arguments in their order in the sentence. How many
arguments does the first predicate has (8th column) and the sec-
ond one (9th column)? 2 points

• For each predicate, draw the arcs corresponding to its arguments.
You will draw these arcs under the sentence and label them with
their names. 2 points

• Although an arc points to a single word, each argument consists
of phrase. This phrase corresponds to the syntactic dependents
of the argument head word – the syntactic subtree starting from
the pointed word, until it intersects with another one. Draw a
box around the arguments of say and then vote. Use two figures.

6 points
• Represent the predicate–argument structures for both predicates

in the form of: 4 points
predicate(arg0, arg1, arg2, ...).

5

2 Problem
In this part, documents are allowed. It is worth 144 points.

Transition-based parsing is a a technique to parse dependencies. This parsing
technique uses a queue of input words, a stack, and a set of operations to apply to
these data structures. The three main parsing variants are called arc-standard
(Yamada and Matsumoto, 2003), arc-greedy (Nivre, 2003), and swap (Nivre,
2009).

During the laboratories, you have implemented the arc-greedy version. In
this part of the examination, you will study and program the arc-standard and
swap versions.

As programming language, you can use Python, Java, Perl, or Prolog. You
will focus on the program structure and not on the syntactic details. You can
ignore the Python modules, Java packages or imports for instance.

2.1 Parsing with Arc-Standard
Tables 4 and 5 show the definitions of the actions (transitions) involved in arc-
greedy and arc-standard parsing. Arc-greedy in Table 4 is given as a reminder
of what we used for the course assignments.

Table 4: The transitions in arc-greedy parsing, where W is the initial word
list; I, the current input word list; A, the graph of dependencies; and S, the
stack. The triple 〈S, I, A〉 represents the parser state. n, n′, and n′′ are lexical
tokens. The pair (n′, n) represents an arc from the head n′ to the modifier n

Actions Parser states Conditions
Initialization 〈nil,W, ∅〉
Termination 〈S, [], A〉
Shift 〈S, [n|I], A〉 → 〈[S|n], I, A〉
Reduce 〈[S|n], I, A〉 → 〈S, I, A〉 ∃n′(n′, n) ∈ A
Left-arc 〈[S|n], [n′|I], A〉 → 〈S, [n′|I], A ∪ {(n← n′)}〉 @n′′(n′′, n) ∈ A
Right-arc 〈[S|n], [n′|I], A〉 → 〈[S|n, n′], I, A ∪ {(n→ n′)}〉

2.1.1 Arc-Standard applied to Projective Graphs

Table 6 shows a manually-parsed sentence from Talbanken and the Swedish
corpus in CoNLL-X:

Denna typ uppvisar många fördelar
‘This type exhibits many advantages’

In this section, you will manually apply the arc-standard algorithm to this
sentence. To make parsing easier, add a dummy word called ROOT at index 0:

0 ROOT _ ROOT ROOT _ 0 ROOT _ _

1. Draw the dependency graph of the sentence in Table 6. 3 points

6

Table 5: The transitions in arc-standard parsing, where W is the initial word
list; I, the current input word list; A, the graph of dependencies; and S, the
stack. The triple 〈S, I, A〉 represents the parser state. n, n′, and n′′ are lexical
tokens. The pair (n′, n) represents an arc from the head n′ to the modifier n

Actions Parser states Conditions
Initialization 〈nil,W, ∅〉
Termination 〈[ROOT], [], A〉
Shift 〈S, [n|I], A〉 → 〈[S|n], I, A〉
Left-arc 〈[S|n, n′], I, A〉 → 〈[S|n′], I, A ∪ {(n← n′)}〉 n 6= ROOT
Right-arc 〈[S|n, n′], I, A〉 → 〈[S|n], I, A ∪ {(n→ n′)}〉

Table 6: Dependency graph of the sentence Denna typ uppvisar många fördelar
from Talbanken and CoNLL-X

id form lemma cpostag postag feats head deprel phead pdeprel
1 Denna _ PO PO _ 2 DT _ _
2 typ _ NN NN _ 3 SS _ _
3 uppvisar _ VV VV _ 0 ROOT _ _
4 många _ PO PO _ 5 DT _ _
5 fördelar _ NN NN _ 3 OO _ _

2. Parse manually the sentence in Table 6 using arc-standard: i.e. Find
the sequence of transitions. You have to write a transition sequence and
visualize the corresponding queue, stack, and graph at each step. 8 points

2.1.2 Programming

In this section, you will write a program to parse a hand-annotated sentence
using arc-standard. The parser state will consist of the sentence, a stack, a
queue, and a graph.

Data Structure. You will assume that the sentence graph is stored in a
sentence variable consisting of a list of words, where each word is a Python
dictionary (or a Map if you use Java). In Python, the sentence in Table 6 will
look like this:

[{’phead’: ’0’, ’form’: ’ROOT’, ’pdeprel’: ’ROOT’,
’feats’: ’ROOT’, ’cpostag’: ’ROOT’, ’id’: ’0’, ’head’: ’0’,
’postag’: ’ROOT’, ’lemma’: ’ROOT’, ’deprel’: ’ROOT’},

{’phead’: ’_’, ’form’: ’Denna’, ’pdeprel’: ’_’, ’feats’: ’_’,
’cpostag’: ’PO’, ’id’: ’1’, ’head’: ’2’, ’postag’: ’PO’,
’lemma’: ’_’, ’deprel’: ’DT’},

{’phead’: ’_’, ’form’: ’typ’, ’pdeprel’: ’_’, ’feats’: ’_’,
’cpostag’: ’NN’, ’id’: ’2’, ’head’: ’3’, ’postag’: ’NN’,
’lemma’: ’_’, ’deprel’: ’SS’},

7

...]

For the parser state, you can use the same data structure as in the labs:
lists for the stack and the queue, and a dictionary for the graph, where
graph[’heads’] will store the heads and graph[’deprels’], the grammati-
cal functions. You can also define the structure you want, provided that you
describe it.

Programming the Transitions. Program the transitions in Table 5 in the
programming language you selected: left-arc, right-arc, and shift for the arc-
standard parser. Use one function or method per transition. 18 points

Programming an Oracle. Describe how the automatic parser would apply
the transitions to a manually-parsed sentence so that it can recreate the same
dependency graph (gold-standard parsing). Such a procedure is called an oracle.
You will first describe the algorithm in your own language (Swedish, English,
or a language I understand) and then program it:

1. You will start with when to apply a left-arc, which is simpler. 5 points

2. For right-arc, be sure that you do not pop the top of the stack too early.
The parser needs to collect all its children still in the queue before the
parser creates a right-arc and pops the top of the stack; 5 points

3. Finally, when will the parser apply a shift? 2 points

4. Program the description of your oracle for the arc-standard parser in the
programming language you selected. It consists of conditions on when to
apply left-arc, right-arc, and shift. You will call this function or method
oracle() (or reference() as in the labs). 20 points

2.2 Nonprojective Graphs
2.2.1 Arc-Standard applied to Nonprojective Graphs

In this section, you will consider the sentence in Table 7:

Vad beror detta på?
‘What does this depend on?’

In the exercises below, ignore the question mark at the end of the sentence so
that you can save time.

1. Draw the dependency graph of the nonprojective sentence in Table 7. 3 points

2. Show that this sentence cannot be parsed by arc-standard or arc-greedy
(you can choose the one you want). Start the parsing and explain why
you cannot complete it. (Ignore the question mark). 6 points

3. Try to explain why arc-greedy or arc-standard cannot parse nonprojective
sentences. 6 points

8

Table 7: Dependency graph of the sentence Vad beror detta på? from Talbanken
and CoNLL-X

id form lemma cpostag postag feats head deprel phead pdeprel
1 Vad _ AB AB _ 4 PA _ _
2 beror _ VV VV _ 0 ROOT _ _
3 detta _ PO PO _ 2 SS _ _
4 på _ PR PR _ 2 OA _ _
5 ? _ I? I? _ 2 I? _ _

2.3 Finding the Nonprojective Graphs
In this section, you will program a function to determine if a graph is projective
or not.

2.3.1 Definition

In projective graphs, each pair of words (Dep,Head), which are directly con-
nected, is only separated by direct or indirect dependents of Head or Dep. All
the words in-between are hence dependents of Head. This can be restated more
formally as: for all dependency relations in a sentence between a word wi and
its head whi

, either direction, wi ← whi
, respectively whi

→ wi, and ∀wj ,
so that i < j < hi, respectively hi < j < i, wj is transitively connected to
whi

. In a dependency graph, projectivity results in the absence of crossing arcs.
Nonprojective graphs are graphs that contain at least one nonprojective link.

Inside a segment defined by wi, a word of index i, and whi , its head of
index hi, all the words are transitively connected to whi

. The identification
of nonprojective arcs is carried out using the negation of this property. A
dependency arc (i, hi) is nonprojective if there is at least one word wj which
has its index inside the range i..hi and none of this word’s transitive heads is
whi .

2.3.2 Programming

Write a function that determines if a graph is projective or not and if not returns
the list of nonprojective links. 20 points

As a suggestion, you can split this function in two:

1. Write first a function connected(word, head, sentence) that deter-
mines if the two words word and head are connected by a direct or indirect
dependency chain: If there is a sequence of links (heads) between word
and head. In Table 7, denna and uppvisar are connected (uppvisar → typ
→ denna) while denna and många are not;

2. Write a nonproj_links(sentence) function that checks that for every
word in the sentence, all the words between this word and its head are
direct or indirect dependents of it head (are directly or indirectly connected
to its head).

9

2.4 Parsing Nonprojective Graphs
Nivre (2009) extended the arc-standard parser with a swap transition to parse
nonprojective sentences. The swap transition enables the parser to reorder the
words. Table 8 shows the definition of the transitions using in swap.

Nivre (2009)’s article is provided as a reference, where the important parts
are marked by a vertical line in the margin. This text is difficult to read. Read
only the paragraphs you need, if you feel this complements the text of the
examination. (You only need it really for the question in Sect. 2.5.)

Table 8: The parser transitions in swap parsing, where W is the initial word
list; I, the current input word list; A, the graph of dependencies; and S, the
stack. The triple 〈S, I, A〉 represents the parser state. n, n′, and n′′ are lexical
tokens. The pair (n′, n) represents an arc from the head n′ to the modifier n

Actions Parser states Conditions
Initialization 〈nil,W, ∅〉
Termination 〈[ROOT], [], A〉
Shift 〈S, [n|I], A〉 → 〈[S|n], I, A〉
Left-arc 〈[S|n, n′], I, A〉 → 〈[S|n′], I, A ∪ {(n← n′)}〉 n 6= ROOT
Right-arc 〈[S|n, n′], I, A〉 → 〈[S|n], I, A ∪ {(n→ n′)}〉
Swap 〈[S|n, n′], I, A〉 → 〈[S|n′], [n|I], A〉 n 6= ROOT and

inx(n) < inx(n′)

2.4.1 Programming

Using the same data structure as in in Sect. 2.1.2, program the swap transition.
As with left_arc(), right_arc(), and shift(), you will use a function or
method. 6 points

2.4.2 Projective Order

In this section, you will parse manually the sentence in Table 7 with swap.
The key to parsing a nonprojective graph is to traverse it using an in-order

traversal that considers the left and and then the right children of a word. This
traversal is defined recursively by the inorder function below. The projective
order results in a new ordering of the words that makes the sentence projective.
It is of course not the original sequence that is not projective. This sequence is
returned in projective_order, which is set to an empty list before the function
is called.

You will first answer a few questions to help you understand the projective
order and then parse the sentence:

1. What are the right modifiers (children) of beror? List them in the sentence
order? 2 points

2. What are the left modifier(s) (child/children) of på? List them (it) in
the sentence order? How should you move this word to have a projective

10

graph? Hint: Move this word to the right, one word at a time, until the
sentence is projective. 4 points

3. Starting from ROOT, traverse the sentence in Table 7 in order and write
the new ordering: The sequence of indices that makes the sentence pro-
jective. If you do not know what in order traversal is, look at the inorder
function. You should find a sequence [0, 2, ...], where you have moved
one index so that the graph is projective 6 points

4. Using swap, find the sequence of transitions that parses the sentence in
Table 7. If the next word in the projective order is the kth in the queue,
you will need to carry out k shifts and k−1 swaps so that you can create a
link between the top and second in the stack. Visualize the corresponding
queue, stack, and graph at each step. (Ignore the question mark). 12 points

def inorder(current_word, sentence, projective_order):
"""
In order traversal of a dependency graph
:param current_word:
:param sentence:
:param projective_order:
:return:
"""
if current_word == []:

return
left_children, right_children = get_children(current_word, sentence)
for word in left_children:

inorder(word, sentence, projective_order)
print(current_word[’id’], end=’ ’, flush=True)
projective_order.append(current_word[’id’])
for word in right_children:

inorder(word, sentence, projective_order)

def get_children(current_word, sentence):
"""
Returns the lists of sorted left
and right children (modifiers) of a word
:param current_word:
:param sentence:
:return:
"""
left_children = []
right_children = []
for word in sentence:

if word[’head’] == current_word[’id’]:
if int(word[’id’]) < int(current_word[’id’]):

left_children.append(word)
if int(word[’id’]) > int(current_word[’id’]):

right_children.append(word)
return left_children, right_children

11

2.5 An Oracle for Nonprojective Graphs
Nivre (2009, p. 355 and Fig. 4) describes an oracle to parse manually-annotated
nonprojective sentences with the swap transition. Program this oracle. This
oracle is nearly identical to the one in Sect. 2.1.2. You just need to insert a
condition when the swap() function is called. 18 points

References
Nivre, J. (2003). An efficient algorithm for projective dependency parsing.
In Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT 03), pages 149–160, Nancy.

Nivre, J. (2009). Non-projective dependency parsing in expected linear time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing
of the AFNLP, pages 351–359, Suntec, Singapore. Association for Computa-
tional Linguistics.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with
support vector machines. In Proceedings of the 8th International Workshop
on Parsing Technologies (IWPT 03), pages 195–206, Nancy.

12

	Closed Book Part: Questions
	Problem
	Parsing with Arc-Standard
	Arc-Standard applied to Projective Graphs
	Programming

	Nonprojective Graphs
	Arc-Standard applied to Nonprojective Graphs

	Finding the Nonprojective Graphs
	Definition
	Programming

	Parsing Nonprojective Graphs
	Programming
	Projective Order

	An Oracle for Nonprojective Graphs

