
EDAN20
Final Examination

Pierre Nugues

October 27, 2015

The examination is worth 221 points. The distribution of points is indicated
with the questions. You need 55% to have a mark of 4 and 70% to have a 5.

1 Closed Book Part: Questions
In this part, no document is allowed. It is worth 107 points.

Chapter 1. Cite three applications that use natural language processing to
some extent. 3 points

Chapter 1. Annotate each word of the sentence The boy hit the ball with its
part of speech. You will use parts of speech you learned at school. 3 points

Chapter 1. Draw the graph of the sentence The boy hit the ball using depen-
dency relations. You will notably identify the subject and the object.

4 points

Chapter 1. Identify the proper nouns (or named entities) in the sentence Aris-
totle wrote the Organon and describe what entity linking is on this exam-
ple. 8 points

Chapter 1. Peedy is a 3D animated character designed by Microsoft that re-
sponds to spoken commands to change discs. Figure 1 shows it archi-
tecture. Describe, notably in terms of input and output, the modules:
whisper, names, NLP, semantics, and dialogue. 5 points

Chapter 2. Describe what a concordance is and give all the case-sensitive con-
cordances of the string Vårfru: 3 points

Här är planen för skolor i Centrum-Väster
Förändringar för Vårfruskolan och Apelskolan. En ny skola och
kanske förskola på Stenkrossen. Detta är kärnan i del 1 av pla-
nen för skolor och förskolor i Centrum-Väster.

Denna första del av områdeslokalplanen åker nu ut på remiss.
Delplanen berör förskola och skola upp till tredje klass.
De förändringar som föreslås gäller Vårfruskolan, Apelskolan
och nybyggnation på Stenkrossen.

1

Speech input Whisper
Speech recognition

Names
Proper noun
substitution

NLP
Language analysis

Name
database

Action templates
database

Semantics
Template matching
Object description

CDs
database

Player/Reactor
Animation engine

Video output
Animated parrot

Speech and animation
database

Dialogue
Context and animation state

Sound output Speech controller Dialogue rules
database

Jukebox
Application
CD changer

Figure 1: Architecture of the Persona conversational assistant. After Ball et al.
(1997)

Två alternativ ges i denna plan för 2016-2020. Det alternativ
som barn- och skolförvaltningen förordar innebär att:
—Montessorigrundskolan Apelskolan (som nu rymmer förskoleklass
och årskurs 1-6) blir en skola för förskoleklass och årskurs 1-3.
— En ny förskola och F-3-skola byggs på Stenkrossen.
— F-3-klasserna på Vårfruskolan flyttas till denna nya enhet på
Stenkrossen.
— Vårfruskolan blir en skola för klasserna 4-6, i stället för att
som nu vara en F-6-skola.

Sydsvenskan.se, Retrieved October 20, 2015. Author Alexander
Agrell

Chapter 2. Identify what the regular expressions in the list below will match
in the text above (identify all the matches or write no match if there is no
match): 10 points

List of regular expressions:

1. för+skole
2. (för)+skole
3. (för)+skol(a|e)
4. (för)+skol[a-z]
5. (för)+skol.

2

6. (för)+skol[a-z]{2}

7. (för)+skol\w+

8. (för)+skol\w{2,}

9. \d+-\d+

10. ([ao])[a-z]\1

Chapter 2. Write a regular expression that matches all the words, where the
stem skol occurs. Be sure to be Unicode compatible. 2 points

Chapter 2. Spell checkers identify words that are not in their dictionaries and
suggest corrections to unknown words. They typically use four operations:
deletions, insertion, substitutions, and transpositions. 12 points

Given the string acress not in the dictionary:

1. How many deletions can you apply to this string? List them all.

2. How many transpositions can you apply to this string? List them all.

3. How many insertions can you apply to this string? List two of them.

4. How many substitutions can you apply to this string? List two of
them.

You will only consider lowercase unaccented characters in your counts.

Chapter 3. Describe what a Unicode block is and give an example of a block.
2 points

Chapter 4. Describe what a decision tree is. 2 points

Chapter 4. Describe very succinctly how a decision tree can be induced from
a data set. Use an intuitive formulation. 2 points

Chapter 5. What does this Unix command do? 3 points

tr -cs ’A-Za-z’ ’\n’ <file.txt

Chapter 5. What do these Unix commands do? 3 points

sort <file.txt | uniq -c

Chapter 5. Many interactive search systems provide a word prediction and
word completion module that given the start of a phrase suggests possible
following words. Figure 2 shows an example of such an interaction, where
a user has typed the word Justin and where the search system suggests
gatlin, bieber, timberlake, rose, and williams as possible next words.

1. Language models are a model of word prediction. Define what a
language model is and how to approximate it in practice. 4 points

2. Language models use word N -grams. Identify all the unigrams, bi-
grams, and trigrams in the text below excerpted from Nils Holgersson
by Selma Lagerlöf: 3 points

3

Figure 2: Term search with a popular Swedish news site. A user has typed the
word Justin in the right-hand input box and the system shows a list of suggested
next words in bold characters below it. Retrieved on October 20, 2015 from the
http://www.dn.se/ site.

Det var en gång en pojke. Han var så där en fjorton år
gammal, lång och ranglig och linhårig.

You will ignore the uppercase/lowercase difference and the punctua-
tion.

3. Write a probabilistic model of the first sentence above using unigrams
and bigrams. You will not try to compute these probabilities. 3 points

4. Describe how you would estimate a unigram probability. 2 points

5. Describe how you would estimate a bigram probability. 3 points

6. Finally, describe you would carry out the bigram ranking in Fig. 2. 3 points

Chapter 5. Describe what is an unseen bigram (or N -gram). 1 point

Chapter 5. Describe what is the simple back-off method to cope with unseen
bigrams. 2 points

Chapter 5. Give the definition of the mutual information association measure.
2 points

Chapter 7. Using parts of speech from the set: {determiner, adjective, noun,
pronoun, modal, and verb}, and the sentences: The can rusted and The
boy can swim, 6 points

1. Annotate each word of the two sentences with its correct part of
speech;

2. In your opinion, what is the most frequent part of speech of the word
can?

3. Reannotate each word of the two sentences with the most frequent
part of speech of each word;

4. Imagine a rule taking into account the context to disambiguate the
word can.

4

http://www.dn.se/

Words POS Groups
Rockwell NNP
said VBD
the DT
agreement NN
calls VBZ
for IN
it PRP
to TO
supply VB
200 CD
additional JJ
so-called JJ
shipsets NNS
for IN
the DT
planes NNS
. .

Table 1: An excerpt of the CoNLL 2000 dataset (Tjong Kim Sang and Buchholz,
2000)

Chapter 10. Table 1 shows an excerpt of the CoNLL 2000 dataset (Tjong
Kim Sang and Buchholz, 2000). Using the IOB-2 scheme, consisting of
the begin, inside, and outside tags, annotate the sentence words with the
noun groups (NP) and verb groups (VP). You will annotate the remaining
words with O. 4 points

Chapter 11. Draw the dependency graph of the sentence Aristotle wrote the
Organon 2 points

Chapter 11. Extract a triple consisting of the subject, the verb, and the object
from the sentence Aristotle wrote the Organon 1 points

Chapter 13. Nivre’s parser uses four parsing actions: left-arc, right-arc, re-
duce, and shift. Define these four actions. 4 points

Chapter 16. Table 2 shows two sentences from the CoNLL 2011 corpus (Prad-
han et al., 2011). The Chain column contains the coreference chains of
entities. Give all the coreference chains appearing in these two sentences
as well as their list of mentions. You will use the notation:

CorefChain(0) = {Mention1,Mention2, ...},
...
CorefChain(x) = {Mention1,Mention2, ...}
...

5 points

5

Table 2: Simplified annotation of two sentences in the CoNLL 2011 corpus.
After Pradhan et al. (2011).

Document Inx Word POS Parse bit Type Chain
wsj_0771 0 “ “ (TOP(S(S* * -
wsj_0771 1 Vandenberg NNP (NP* (PERSON) (8|(0)
wsj_0771 2 and CC * * -
wsj_0771 3 Rayburn NNP *) (PERSON) (23)|8)
wsj_0771 4 are VBP (VP* * -
wsj_0771 5 heroes NNS (NP(NP*) * -
wsj_0771 6 of IN (PP* * -
wsj_0771 7 mine NN (NP*)))) * (15)
wsj_0771 8 , , * * -
wsj_0771 9 ” ” *) * -
wsj_0771 10 Mr. NNP (NP* * (15
wsj_0771 11 Boren NNP *) (PERSON) 15)
wsj_0771 12 says VBZ (VP* * -
wsj_0771 13 , , * * -
wsj_0771 14 referring VBG (S(VP* * -
wsj_0771 15 as RB (ADVP* * -
wsj_0771 16 well RB *) * -
wsj_0771 17 to IN (PP* * -
wsj_0771 18 Sam NNP (NP(NP* (PERSON* (23
wsj_0771 19 Rayburn NNP *) *) -
wsj_0771 20 , , * * -
wsj_0771 21 the DT (NP(NP* * -
wsj_0771 22 Democratic JJ * (NORP) -
wsj_0771 23 House NNP * (ORG) -
wsj_0771 24 speaker NN *) * -
wsj_0771 25 who WP (SBAR(WHNP*) * -
wsj_0771 26 cooperated VBD (S(VP* * -
wsj_0771 27 with IN (PP* * -
wsj_0771 28 President NNP (NP* * -
wsj_0771 29 Eisenhower NNP *))))))))))) (PERSON) 23)
wsj_0771 30 . . *)) * -

wsj_0771 0 “ “ (TOP(S* * -
wsj_0771 1 They PRP (NP*) * (8)
wsj_0771 2 allowed VBD (VP* * -
wsj_0771 3 this DT (S(NP* * (6
wsj_0771 4 country NN *) * 6)
wsj_0771 5 to TO (VP* * -
wsj_0771 6 be VB (VP* * (16)
wsj_0771 7 credible JJ (ADJP*))))) * -
wsj_0771 8 . . *)) * -

6

2 Problem
In this part, documents are allowed. It is worth 114 points.

In this part, you will program an elementary question–answering system,
inspired by IBM Watson (Ferrucci, 2012). IBM Watson proved to be better
than any human to answer questions such as this one from the Jeopardy quiz
game:

RECENT HISTORY: President under whom the U.S. gave full recog-
nition to Communist China.

(Answer: Jimmy Carter)

As programming language, you can use Java, Python, Perl, or Prolog. You
will focus on the program structure and not on the syntactic details. You can
ignore the Java packages or imports for instance.

2.1 Understanding a Module of IBM Watson
Before you write a program, read the Sections: Introduction, Searching unstruc-
tured resources, and Generating candidates from search results (only the first
paragraph) from the article Finding needles in the haystack: Search and candi-
date generation (Chu-Carroll et al., 2012). This paper describes the techniques
used by IBM Watson to find candidate answers to a question. It was written
by the designers of this system.

1. Summarize in about 10-15 lines how IBM Watson extracts paragraphs
relevant to a question from an encyclopedia. 8 points

2. Summarize in about 5-10 lines the baseline technique IBM Watson uses
to extract candidate answers to a question from the passages. 6 points

2.2 Passage Retrieval
The real IBM Watson is complex and we propose here a simplified architecture
of a typical question–answering system (Figure 3). It consists of three main
modules, where

• The first module parses the question and classifies it;

• The second module ranks documents that it extracts from a document
store;

• The third module extracts the answer from a set of documents extracted
by the second module.

In this section, we will focus on the second module, where the document
store is a large set of documents such as all the articles in Wikipedia. You will
represent the documents using the vector space model.

7

Question Question
processing

Passage
retrieval

Answer
extraction Answer

Question parsing
and classification:
Syntactic parsing,
entity recognition,
answer classification

Document re-
trieval. Extrac-
tion and ranking
of passages: In-
dexing, vector
space model.

Extraction and
ranking of an-
swers: Answer
parsing, entity
recognition

Figure 3: Overall architecture of a question–answering system

2.2.1 Representing the Documents

1. The vector space model represents a document by a vector, where the
dimensions are the words and the coordinates are computed with the TF ·
IDF formula. Tfi is the relative frequency of term i in the document and
idfi is the inverted document frequency computed with this formula:

idfi = log(
N

ni
),

where N is the total number of documents and ni is the number of docu-
ments in the collection, where term i occurs at least once.
Using the TF · IDF model, represent manually the two short documents
below:

D1.txt: Chrysler plans new investments in Canada and in Latin America.
D2.txt: Chrysler plans major investments in Canada and in Mexico.

with two vectors.
You will set all the words in lowercase; you will sort them in alphabet-
ical order; and you will ignore the punctuation. Compute manually the
term frequency of each word in a document and compute the document
frequency of each word. Compute manually TF · IDF . You will use log2
to compute the logarithms. Finally, write the two vectors representing
D1.txt and D2.txt. 8 points

2. Write a program that reads a document, sets the text in lowercase, tok-
enizes its content, counts the words, and outputs the words in alphabetical
order with their relative frequencies in the document. You will ignore non-
alphabetical symbols. The screen output for D1.txt should look like to:

america 0.1
and 0.1
canada 0.1
chrysler 0.1
in 0.2
...

8

Break down your code into tokenize and count functions. In Java, use
Map structures and, in Python, dictionaries to count the words, where the
keys will be the words and the values, the counts. 12 points

3. Extend your program so that it reads all the documents with a .txt
suffix in a folder, for each document, extracts the relative frequencies, and
stores them in a Java map or Python dictionary. You will call this map:
collection. For each (key, value) pair, the key will be the document
name and the value will be the map of word frequencies obtained in the
previous question. In our small collection, collection will have two keys:
D1 and D2.
If you do not know the name of the function to read a folder, invent a
plausible one with a short description in terms of input output. 6 points

4. Write a function that computes the document frequency of the terms and
outputs the terms in alphabetical order. The document frequency of a
term is the number of documents in the collection that contain this word.
Store these document frequencies in a map that you will call df and output
it (on the screen). For our collection of two documents, the output should
look like: 6 points

america 1
and 2
canada 2
chrysler 2
in 2
investments 2
latin 1
...

5. Finally, for each document, compute the TF · IDF of each word. You will
store the results in collection map. 6 points

2.2.2 Cosine Similarity

Now that we have represented the documents using the vector space model, we
can compute the cosine similarity between a question and a document. The
similarity will range from 0 (totally different documents) to 1 (very similar
documents). The cosine similarity of two vectors ~u and ~v is defined as:

~u · ~v
||~u|| · ||~v||

1. Implement a dot function that computes the dot product of two vectors.
The two vectors will be stored as Map structures in Java or dictionaries in
Python. You will traverse all the keys of one vector, and for each of these
keys, you will multiply the values obtained from the two vectors. You will
return the sum. 3 points

2. Standardize the documents in collection with their respective norm:
Divide all the parameters of each document vector by its norm. The norm
of a vector ~u is defined by: 3 points

9

||~u|| =
√
~u · ~u

3. Write a program to represent the question as a vector. You will do exactly
like for the documents: You will use a vector that you will store in a map.
You will standardize the question with its norm. 4 points

4. Given a question as input, compute the cosine similarity between this
question and all the documents in the collection and extract the maximum.

4 points

2.2.3 Building an Inverted Index

The procedure you programmed has to compare the question to all the doc-
uments. This is something not viable for collections of billions of documents.
You will represent your collection with an inverted index instead. Table 3 from
Nugues (2014) shows an example of such an index, where each key is a word
and each value, a list of documents that contains the word. You will replace the
word positions with the TF · IDF values and in your case, the words will be in
lower case.

Table 3: An inverted index. Each word in the dictionary is linked to a posting
list that gives all the documents in the collection where this word occurs and its
positions in a document. Here, the position is the word index in the document.
In the examples, a word occurs at most once in a document. This can be easily
generalized to multiple occurrences

Words (Keys) Posting lists (Values)
America (D1, 7)
Chrysler (D1, 1) → (D2, 1)
in (D1, 5) → (D2, 5)
investments (D1, 4) → (D2, 4)
Latin (D1, 6)
major (D2, 3)
Mexico (D2, 6)
new (D1, 3)
plans (D1, 2) → (D2, 2)
...

1. Write a program to build an inverted index from the document collection.
This index will be similar to that in Table 3. The words you collected
from the corpus are the keys of a Map (or a dictionary in Python) and
the values are Maps themselves, where the key is the document name and
the value is the TF · IDF score. 12 points

2. Compute the cosine similarity between the question and the documents
stored in the inverted index. 6 points

10

2.3 Candidate Extraction
In this section, we will focus on the third module in Fig. 3.

1. Given the question in the introduction of the programming part (Part II),
let us suppose that the passage retrieval module retrieves this paragraph
fromWikipedia (https://en.wikipedia.org/wiki/China-United_States_
relations)

... Although Brzezinksi sought to quickly establish a security re-
lationship with Beijing to counter the Soviet Union, Carter sided
with Vance in believing that such a deal would threaten exist-
ing U.S.-Soviet relations, including the SALT II negotiations.
Thus, the administration decided to cautiously pursue politi-
cal normalization and not military relations. Vance, Brzezinski,
and Oksenberg traveled to Beijing in early 1978 to work with
Leonard Woodcock, then head of the liaison office, to lay the
groundwork to do so. The United States and the People’s Re-
public of China announced on December 15, 1978 that the two
governments would establish diplomatic relations on January 1,
1979.

List all the candidates the baseline extractor of IBM Watson would ex-
tract from this passage. See Finding needles in the haystack: Search and
candidate generation (Chu-Carroll et al., 2012) for a description of the
baseline extractor. 4 points

2. Table 4 shows the words of a sentence from the Wikipedia excerpt anno-
tated with their part of speech. Write a program that enables your system
to extract the candidates from the sentence. As input you will use a list of
triples (index, word, pos), for instance a Java List, storing the words
in the table. You can use the triple representation you want and you will
assume that your program has read the list. Your program should extract
all the candidates in this table and must be as generic as possible (i.e.
work for other sentences). 8 points

3. Once extracted, how would you rank the candidates? 8 points

4. Outline a strategy to link the entity Carter to the word president in the
question. To serve as inspiration, you can read the Section PRISMATIC
Search in Finding needles in the haystack: Search and candidate generation
(Chu-Carroll et al., 2012). 8 points

References
Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly, T., Stankosky, A.,
Thiel, D., Dantzich, M. V., and Wax, T. (1997). Lifelike computer charac-
ters: the Persona project at Microsoft Research. In Bradshaw, J. M., editor,
Software Agents, pages 191–222. AAAI Press/MIT Press, Cambridge, Mas-
sachusetts.

11

https://en.wikipedia.org/wiki/China-United_States_relations
https://en.wikipedia.org/wiki/China-United_States_relations

Index Word POS Index Word POS
1 Although IN 20 with IN
2 Brzezinksi NNP 21 Vance NNP
3 sought VBD 22 in IN
4 to TO 23 believing VBG
5 quickly RB 24 that IN
6 establish VB 25 such PDT
7 a DT 26 a DT
8 security NN 27 deal NN
9 relationship NN 28 would MD
10 with IN 29 threaten VB
11 Beijing NNP 30 existing VBG
12 to TO 31 U.S.-Soviet JJ
13 counter VB 32 relations NNS
14 the DT 33 , ,
15 Soviet NNP 34 including VBG
16 Union NNP 35 the DT
17 , , 36 SALT NNP
18 Carter NNP 37 II NNP
19 sided VBD 38 negotiations NNS

Table 4: Words annotated with their part of speech.

Chu-Carroll, J., Fan, J., Boguraev, B., Carmel, D., Sheinwald, D., and Welty,
C. (2012). Finding needles in the haystack: Search and candidate generation.
IBM Journal of Research and Development, 56(3.4):6:1–6:12.

Ferrucci, D. A. (2012). Introduction to “This is Watson”. IBM Journal of
Research and Development, 56(3.4):1:1 –1:15.

Nugues, P. M. (2014). Language Processing with Perl and Prolog. Theories,
Implementation, and Application. Springer Verlag, Berlin Heidelberg New
York, second edition.

Pradhan, S., Ramshaw, L., Marcus, M., Palmer, M., Weischedel, R., and Xue,
N. (2011). CoNLL-2011 shared task: Modeling unrestricted coreference in
OntoNotes. In Proceedings of the Fifteenth Conference on Computational Nat-
ural Language Learning: Shared Task, pages 1–27, Portland, Oregon, USA.
Association for Computational Linguistics.

Tjong Kim Sang, E. F. and Buchholz, S. (2000). Introduction to the CoNLL-
2000 shared task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000,
pages 127–132, Lisbon.

12

	Closed Book Part: Questions
	Problem
	Understanding a Module of IBM Watson
	Passage Retrieval
	Representing the Documents
	Cosine Similarity
	Building an Inverted Index

	Candidate Extraction

