
EDAN20
Final Examination

Pierre Nugues

October 24, 2013

The examination is worth 188 points. The distribution of points is indicated
with the questions. You need 55% to have a mark of 4 and 70% to have a 5.

1 Closed Book Part: Questions
In this part, no document is allowed. It is worth 90 points.

Chapter 1. Cite three applications that use natural language processing to
some extent. 3 points

Chapter 1. Annotate each word of the sentence The mice have eaten the cheese
with its lemma and part of speech. 4 points

Chapter 1. Draw the parse trees/graphs of the sentence The mice ate the
cheese using constituents and dependencies. 4 points

Chapter 1. What is the CoNLL format? 2 points

Chapter 2. Describe what a concordance is and give all the concordances of
the string nomine: 3 points

De kan vinna Augustpriset
Kultur & Nöjen. Per Olov Enquist kan få Augustpriset för
tredje gången. Det stod klart när nomineringarna presenterades
på måndagen. Men Jonas Gardell blev utan nominering för sin
romansvit "Torka aldrig tårar".
Per Olov Enquist nomineras för "Liknelseboken". Författaren
tog hem priset såväl 1999 som 2008 med "Livläkarens besök" re-
spektive "Ett annat liv". De övriga nominerade i skönlitterära
klassen är Lena Andersson med "Egenmäktigt förfarande - en
roman om kärlek", Sven Olov Karlssons "Porslinsfasaderna" och
"Hägring 38" av Kjell Westö samt de två poeterna Athena Far-
rokhzad med "Vitsvit" och Katarina Frostenson med "Tre vä-
gar"

Sydsvenskan.se, Retrieved October 21, 2013.

1

Chapter 2. Identify what the regular expressions in the list below will match
in the text above (identify all the matches unless specified, or write no
match if there is no match): 10 points

List of regular expressions. The symbol ␣ means a white space (visible
white space):

1. ring␣*

2. ring␣?

3. ring␣+

4. \w{17}

5. \"\w[aeiou]

6. \d+\"

7. \d+

8. \d*\"\.

9. (\")\w+\1

10. ^[A-Z]+[a-z]{3,}

Chapter 2. Write a regular expression that extracts all the person’s names in
the text above. Try to be generic so that it could be applied to other
texts. 4 points

Chapter 2. Let us imagine that we want to extract the two first columns of
a CoNLL file that consists of three columns separated with a tabulation:
\t. Write a regular expression that matches the contents of the two first
columns of a line and stores them in two regex variables (stores). You can
decide to match or not to match the third column. 3 points

Chapter 2. What does this Unix command do?
sort -nr <file.txt 1 point

Chapter 2. Edit distance is sometimes used to measure the distance between
cognates, terms having a common origin. Use the three operations, copy,
delete, and insert to transform the Swedish term obegränsad into the Ger-
man unbegrenzt, and the French term illimité into the English unlimited.
You will use the following codes for the operations: c for copy, d for delete,
and i(letter) for insert a letter. Represent graphically the corresponding
alignments. 6 points

Chapter 3. Given a set with two classes, P and N , with the respective fre-
quencies C(P) and C(N), give the entropy of the set. 3 points

Chapter 4. Give the probabilistic model of the sentence Enquist kan få Au-
gustpriset för tredje gången using no n-gram approximation (chain rule).
You will ignore possible start and end of sentence symbols. 2 points

Chapter 4. Using a unigram approximation, give the probabilistic model of the
sentence Enquist kan få Augustpriset för tredje gången. You will ignore
possible start and end of sentence symbols. 2 points

2

Chapter 4. Using a bigram approximation, give the probabilistic model of the
sentence Enquist kan få Augustpriset för tredje gången. You should have
exactly the same number of terms as in the previous question. You will
ignore possible start and end of sentence symbols. 2 points

Chapter 4. Using the counts in Table 1, you will compute the probability
of the sentence Pierre kan missa Augustpriset för tredje gången using a
unigram and a bigram approximations. You will use fractions to represent
the terms in the product and you will not try to reduce them, i.e. you
will write 1

3 and not 0.33. 6 points
You may need the total number of words in the corpus. You will use the
count of för with the estimation that it represents 1.5% of the corpus.

Table 1: Word and bigram counts retrieved from Bing.com on October 22, 2013
with the search limited to Sweden (site:se).

Words Unigram counts Bigrams Bigram counts
pierre 164 000
kan 15 700 000 pierre kan 2 580
missa 479 000 kan missa 41 500
augustpriset 41 000 missa augustpriset 0
för 20 500 000 augustpriset för 4 480
tredje 587 000 för tredje 65 200
gången 1 180 000 tredje gången 54 500

Chapter 4. Describe a simple back off method to estimate a bigram probability
and apply it to the sentence. You will use the same back off as in the labs.

4 points

Chapter 4. The back off method of the previous question is not a probability.
Describe why. 2 points

Chapter 4. Give the definition of the mutual information association measure.
2 points

Chapter 4. Describe what the vector space model is and represent the two
following sentences using binary vectors (vectors consisting of zeros and
ones). 4 points

D1: Chrysler plans new investments in Latin America.
D2: Chrysler plans major investments in Mexico.

Chapter 6. Table 2 shows a sentence from the CoNLL 2000 corpus of En-
glish (Tjong Kim Sang and Buchholz, 2000). Using the parts of speech:
det(erminer), adv(erb), adj(ective), noun, pre(position), pro(noun), and
verb: 4 points

1. Annotate each word with its correct part of speech;
2. Give two words in this sentence that have an ambiguous part of

speech.

3

Chapter 6. Describe two simple rules to disambiguate these two words. 2 points

Chapter 8. Table 2 contains annotations for the parts of speech and the groups
(chunks). 8 points

1. Underline the noun groups and the verb groups. Use different colors
or styles for each group.

2. Use IOB2 tags to tag the verb groups and the noun groups.

3. Write phrase-structure rules using the parts of speech det(erminer),
adv(erb), adj(ective), noun, pre(position), pro(noun), and verb to
extract the verb groups and the noun groups.

Table 2: An excerpt from the CoNLL 2000 corpus of English (Tjong Kim Sang
and Buchholz, 2000).

Words Parts of speech Chunks
At
the
same
time
,
he
remains
fairly
pessimistic
about
the
outlook
for
imports

Chapter 11. Given the sentence The mice ate the cheese, extract a triple con-
sisting of the subject, the verb, and the object. 1 point

Chapter 11. Nivre’s parser uses two data structures and four parsing actions,
left-arc, right-arc, shift, and reduce. Give the name of these data struc-
tures and the definition of the four actions. 3 points

Chapter 11. Parse manually the sentence The mice ate the cheese using the
two data structures and the four parsing actions. For each action, you
will represent graphically the content of the two data structures and the
graph being constructed. You will need from 8 to 10 steps. 7 points

4

2 Problem
In this part, documents are allowed. It is worth 98 points.

The objective of this part is to investigate and program a system to auto-
matically create categories of things (classes), like birds, birds of Africa, birds
of Europe, birds of America, etc. from a corpus.

You will follow Paşca (2013)’s paper that describes such a system and you
will implement parts of it in this examination. As programming language, you
can use Java, Prolog, Perl, or Python. You will focus on the program structure
and not on the syntactic details. You can ignore the Java packages for instance.

You will also ignore the case, all the words are supposed to be in lowercase
letters, and the punctuation signs.

2.1 The Task
2.1.1 Outline

8 points
Read the introduction and summarize it in 10 to 15 lines.

2.1.2 Summary of the Steps
10 points

Read Sect. 2 and summarize the different steps of the system for the:

1. Extraction of class labels;

2. Extraction of instances.

2.2 Extraction of Class Labels
2.2.1 Initial Vocabulary

8 points
You will implement the extraction of the initial vocabulary as explained in Paşca
(2013, Sect. 2.1). Each element of this vocabulary may consist of multiple
tokens. You will suppose that you have access to the query corpus in your
program in the form of a list of strings; each string corresponding to a single
query. In Java, use this declaration:

List<String> queries;

Following the description in the article, write a program that produces a
map of class labels:

Map<String, Integer> classLabels;

where each classLabel contains an element of the initial vocabulary, a string,
and its count in the query corpus.

2.2.2 Generation via Phrase Similarities

In this exercise, you will represent the web as a big string consisting of words
separated by spaces:

String web;

5

You will ignore the punctuation signs.
To compute the phrase similarities, you will follow the vector space model

and you will represent each phrase by a vector. Each dimension of the vector
space will correspond to a word in the corpus. For each phrase, you will set to
zero the vector parameters representing words not in this phrase.

1. Write a program that extracts all the words (unigrams) and their counts
from the web corpus. In Java, use the declaration: 4 points

Map<String, Integer> unigrams;

2. Write a program that extracts all the bigrams and their counts from the
corpus. In Java, use the declaration: 8 points

Map<String, Integer> bigrams;

3. Given the unigram companies, the bigram software companies, and this
short text simplified from https://en.wikipedia.org/wiki/Software_
industry:

Business models of software companies have been widely dis-
cussed. Network effects in software ecosystems are an important
element in the strategy of software companies.

(Please, ignore the case and the punctuation.)

• Write manually the vector representing the complete text using the
vector space model; use the alphabetical order to mark the positions
and the counts; 3 points

• Write manually the vector representing the contextual features of the
unigram as described in Paşca (2013, Sect. 2.1); however, you will
use the word counts to represent the context words and as window,
you will use one word to the left of the unigram and one word to the
right of it; 3 points

• Write manually the vector representing the contextual features of
the bigram; you will use counts to represent the context words and
as window, you will use one word to the left of the bigram and one
word to the right of it (if any); 3 points

4. Write a program that produces a feature vector for each unigram in the
web corpus. In Java, you can store the map: 20 points

Map<String, Integer[]> unigramContext;

consisting of a string and an array representing the string context (a vector
containing frequencies).

5. Outline how you would compute the feature vectors for the bigrams and
other n-grams. No program is needed. 5 points

6

https://en.wikipedia.org/wiki/Software_industry
https://en.wikipedia.org/wiki/Software_industry

6. Outline how you would write a program to compute the pointwise mutual
information1 between an n-gram and a context word w: 6 points

I(n-gram, w) = log2
P (n-gram, w)

P (n-gram)P (w)
.

No programming is needed in this exercise!

Note that even if an n-gram contains more than one word, you will consider
it as a single word.

You will suppose that you have a map that contains the n-grams and their
counts in the map:

Map<String, Integer[]> ngramContext;

and your program would create a map of context that contains a vector
of pointwise mutual information instead of counts:

Map<String, Double[]> ngramContextMI;

7. Following Paşca (2013, Sect. 2.1), write a program that computes the
context similarity of two n-grams, n1 and n2, using the cosine: 4 points

cos(~n1, ~n2) =

n∑
i=1

n1in2i√
n∑

i=1

n12i

√
n∑

i=1

n22i

.

8. For each n-gram, find its most similar n-gram using the context. In Java,
you can use: 6 points

Map<String, String> similarNgram;

9. Write a program that generates phrases similar to the class labels. For
each element in: 6 points

Map<String, Integer> classLabels;

generate phrases similar to the string. Your program will replace one word
(unigram) of the original class label with its most most similar n-gram
from similarNgram. In Java, use the map:

Map<String, List<String>> similarQueries;

to store the result. You will generate all the phrases similar to a class
label, where a generated phrase and the original class label will differ by
only one substitution.

10. In what the last program is different from the procedure described in the
article? 4 points

7

2.2.3 Syntactic Filtering
This ques-
tion is
optional and
will give you
extra points

You will suppose that you have a part-of-speech tagger that you have applied
to the strings in the map:

Map<String, List<String>> similarQueries;

1. Propose a data structure to hold the results of the tagging;

2. Write a program that applies the syntactic filtering described in the article.

2.2.4 Query Filtering
This ques-
tion is
optional and
will give you
extra points

Using the original list of queries:

List<String> queries;

write a program that implements the query filtering described in the article.

2.3 Extraction of Instances
Should you have the time, you can start programming the extraction of in-
stances. You will be given extra points for this.

References
Paşca, M. (2013). Open-domain fine-grained class extraction from web search
queries. In EMNLP, pages 403–414.

Tjong Kim Sang, E. F. and Buchholz, S. (2000). Introduction to the CoNLL-
2000 shared task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000,
pages 127–132, Lisbon.

1In the textbook, pointwise mutual information is called mutual information.

8

	Closed Book Part: Questions
	Problem
	The Task
	Outline
	Summary of the Steps

	Extraction of Class Labels
	Initial Vocabulary
	Generation via Phrase Similarities
	Syntactic Filtering
	Query Filtering

	Extraction of Instances

