GCD: Hw—A Hardware Solution

(Laboratory Session 4, EDAN15)

Flavius.Gruian@cs.lth.se

February 28, 2017

1 Introduction

In this laboratory session you will have to choose a part (e.g. modulo operation,
ged for two numbers, or ged for N numbers) of the ged algorithm for N number
and implement it in hardware. You will write and simulate your ged module
in VHDL using Vivado for a few of the data sets used in the previous sessions.
The hardware should input/output data via the interface specified herein. Be
aware that in the next laboratory session you will have to connect your module
to a MicroBlaze processor, and implement/evaluate a hardware-accelerated gcd
solution.

2 Hardware Acceleration

The performance of a pure software application can be improved in most cases
by implementing certain tasks in hardware. If not for the increased speed of a
hardware implementation, at least the possibility to execute operations in par-
allel is what makes hardware acceleration a performance booster. Furthermore,
the chip area is often only marginally increased by adding a specialized core
to a design, as opposed to use an additional general purpose processor. The
drawbacks of building a custom core versus using an general purpose processor
are the increased design time, lack of flexibility, the need for knowledge and
tools.

The current and the next laboratory sessions are centred on adding a custom
hardware accelerator to the ged uni-processor system built in the first lab. There
are a number of ways in which a custom hardware accelerator can be added into

the basic system. Although you could use any methiod, we will provide support
for a memory mapped accelerator, using the AXI bus. A wrapper for a slave
AXI-light core will be provided for you to this end. Thus, your core should be
able to connect to the MicroBlaze via the already existing peripheral AXI bus.

note Other methods to insert the core into the system are possible — such as
connecting it via point-to-point links (AXI Streams). Note also that the
functionality of the skeleton we provide is rather limited, and could be
extended with interrupts, Direct Memory Access (DMA) to fetch data
from the memory, etc. If you opt for any of these features or another way
of connecting into the system, you will need to implement the interface on
your own. Vivado does provide some support for creating new IPs with a
certain bus interface that should be very useful.

3 Interface Specification

The intention is to use memory mapped registers to communicate with the
processor. This means that the processor will see some of the registers of your
core at certain addresses in the address space. To send data to the core, the
processor will write at a given address. To receive data, the processor should
read from a (same or another) given address. It is customary to provide both
data and control registers for your core — for instance use a control bit to check by
polling whether a computation is done and the data is valid. To use the provided
AXT-light wrapper, you will need to drive/monitor the following signals from
your hardware (see the user_logic.vhd file):

clk The clock signal for your core (in, 1 bit).

rstN The reset signal, active low (in, 1 bit).

wren Active (high) if a write has been issued (in, 1 bit).

waddr The address of the register to write the data to (in, ? bits).

wdata Actual data to write (in, 32 bits).

rden Active (high) if a read has been issued (in, 1 bit).

raddr The address of the register to read the data from (in, ? bits).

rdata The actual data read (out, 32 bits).

busy Active (high) if the core is busy (out, 1 bit).
The protocol for writing and reading data using the signals given above is
straightforward. When (rd/wr) enable goes high, the address will contain the
register address. For writes the data will also be present in wdata. For reads,
you will need to provide the data from the right register. Finally, the busy sig-
nal is not really used at this moment by provided AXI skeleton, but you might
find some uses for it (e.g. interrupts, or waiting for the core to finish). Note
that the number and deciding how to use the registers is up to you. One idea
is to have a control register containing the core status, that can be polled by
the processor, which reports whether the computation is complete. You could
also use this register to tell the core that the data has been loaded and it can
start computing. Or you might start computation as soon as you wrote data in
a specific register.

4 Finite State Machines in VHDL

Finite State Machines (FSMs) are useful for modeling in many situations. Your
hardware needs to wait for data, read it, process it, and finally write the result
back — we have already identified three states that you should further refine to
fit your choice.

Looking at FSMs from a hardware perspective, one can identify the state
(registers, memory) and the logic for computing the next state and outputs.
Following this pattern, in VHDL FSMs are rather easy to model and synthe-
size. A helpful template for writing an FSM is given below — notice that the
SYNC_PROC models the state register(s) while COMB_PROC the logic gener-
ating the next state and the outputs:

-- insert the following between ’architecture’ and ’begin’ keywords
type STATE_TYPE is (SO, S1, S2, S3);
signal CS, NS: STATE_TYPE;

-- insert the following after ’begin’
SYNC_PROC: process(Clock, Reset)
begin
if (Reset = ’1’) then
CS <= S0;
-- other state variables reset
elsif rising_edge(Clock) then

CS <= NS;
-- other state variable assignment
end if;

end process;

COMB_PROC: process(CS, <more inputs>)
begin
-- assign default signals here to avoid latches
case CS is
when SO =>
-- assign outputs here
-- assign the next state depending on various conditions
-- have a ’when’ for all states
end case;
end process;

State encoding can be enforced by assigning the ENUM_ENCODING attribute.
For example, for a one-hot encoding of the states the following lines should be inserted
after the STAT_TYPE declaration:

attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is "0001 0010 0100 1000"

For binary or gray-code state machines, the encoding can be specified in the same way.

note More templates are available in Vivador: Tools — Language Templates. ..

5 Design Evaluation

For this laboratory assignment, it is recommended to use Vivado to write and simulate
your VHDL code. You should create a new project and add the user_logic.vhd
module file modified by you. Test benches (input stimuli) will be required to simulate
the behavior of your core — unfortunately these need to be written manually in VHDL.
Nevertheless, there are a number of online test bench generators that can help you
by generating an initial skeleton you will need to fill in: https://www.doulos.com/
knowhow/perl/testbench_creation/

To determine whether your design functions correctly, you will use simulation. At
this point, it is interesting to examine both the correctness of the result and also the
number of clock cycles required by your model to carry out the operations. Since
these operations will most likely yield different results and timing for different input
data, you should test the design for various data sets (meaning also more than two
numbers!). Additionally, if possible, try to give a worst case number of cycles required
by your design — an upper bound for carrying out the computations. Although you
will have to initialize your design via a reset and other signals, you should only account
for the time passed between the moment the (first) data is available on the input and
the moment the final result is written at the output.

6 Assignment

1. Hardware/software partitioning — Decide how much to transfer to a hardware
core and how much should still be done by software. For example, you may
choose to implement in hardware the ged of two numbers, or N numbers, or
only a modulo operation, etc.

2. Choose a good algorithm for the part you decided to implement in hardware.
Regardless of the problem, there are usually several ways of finding a solution.
Do not fall into the trap of assuming that what seems to be fast or easy to do
in software has the same features in hardware (see Final Remarks & Hints).

3. Create a new project in Vivado, the same way it was done in the introductory
lab. Add a new design source, called user_logic.vhd, and using the Define
Module dialog box (pops up once you added the source), define the I/O Port
Definitions as mentioned above (see also Figure . This is the top module of
your design, for now.

4. Write your own hardware in the architecture section for the user_logic entity
in the user_logic.vhd. You may use more files and modules, but make sure
you include them for the next lab.

5. Simulate the design for several input data sets. It is recommended to do this
via a test bench, an additional VHDL module that generates the required input
signals and tests the outputs. Or you can simply force the signals to various
values during simulation.

6. Synthesize your user_logic.vhd file and make sure you do not get any warnings
for latches.

7. If possible, try to estimate and report the worst case number of cycles for 2 or
N numbers.

https://www.doulos.com/knowhow/perl/testbench_creation/
https://www.doulos.com/knowhow/perl/testbench_creation/

Define Mcdule [ram—— @

Define a module and spedfy [/O Ports to add to your source file,

Far each port specified:
MSE and LSB values will be ignored unless its Bus column is checked, ‘
Ports with blark names will not be written.

Madule Definition
Entity name: user_logic
Architecture name: | Behavioral

IO Port Definitions

+ Port Name Direction Bus MSB LSE

-l in ~ [

4 [rstN in - @

§ |wren in ~ [
waddr in - i 0
wdata in - 31 0
rden in - @
raddr in - 1 0
rdata out - 3 0
busy out ~ [

Figure 1: Define Module Dialog Box

7 Final Remarks & Hints

e Division and modulo is hard/costly to fully implement in hardware. There
are gcd algorithms which use only subtractions and maybe shifts. These are
preferred for hardware implementation.

e Think your design through, draw any FSMs you plan to implement before ac-
tually starting to write the code.

e The more you implement in hardware, the faster your design will be and the less
you will have to work in the next laboratory session. If you are still pondering
how much or what to implement in hardware, talk to your lab assistant.

e It is a good idea to implement a control register, which contains various flags
the processor can read and set. The number of data registers is up to you and
the functionality you want to implement, but it might be a good idea to keep it
low.

e It is not required to use all the input signals given in the interface above, nor
set all the output signals, if your software is not supposed to make use of them.

e Using files (to read from) in your VHDL test bench is totally acceptable and
recommended, especially if your stimuli data is large, as in some of the test sets.
You may pre-process the provided sample data files to fit your test bench.

	Introduction
	Hardware Acceleration
	Interface Specification
	Finite State Machines in VHDL
	Design Evaluation
	Assignment
	Final Remarks & Hints

