
GCD: S1—A Software, Uni-Processor Solution
(Laboratory Session 2, EDAN15)

Flavius.Gruian@cs.lth.se

February 28, 2017

1 Introduction

In this laboratory session you will have to implement and compare two pure soft-
ware solution of a Greatest Common Divisor (GCD) algorithm for N numbers.
Furthermore, the software has to run on a single processor system, based on a
MicroBlaze soft core, using the available Xilinx FPGA platform. Once having a
correctly functioning system, you will be required to report the device utilization
of your solution along with power, energy estimates and speed measurements
for various compiler optimization levels. The development and testing will be
carried out using the Xilinx Vivado/SDK and the Digilent Nexys-4 evaluation
board.

2 Greatest Common Divisor

The greatest common divisor of two integers a and b, denoted by gcd(a, b), is
the largest integer that divides both. There are a number of algorithms that
can be used for determining the gcd(a, b), some faster, some more elaborate.
For example, a näıve method is to test all numbers downwards from a or b –
whichever is smallest – and stop when you found c, that divides both a and b.
Better methods are Euclid ’s algorithm or the binary algorithm (which can be
found in almost any algebra book or with a search on the internet).

Note, however, that you are required to implement an algorithm for find-
ing the gcd of N numbers, where N (and the actual numbers) is specified at
run-time. It is possible, of course, to use the gcd method for two numbers,
considering that gcd3(a, b, c) = gcd(a, gcd(b, c)).

1

3 Base Architecture

The support architecture for this assignment is similar to the one built in the
tutorial lab (1st). The system should consist of one MicroBlaze core, a dual port
local memory for instructions and for data, a peripheral bus (AXI) connected
to a UART core and a timer core, to carry out the performance measurements.

Input data for your program is provided via the UART, using the follow-
ing format: N a1 a2 ... aN. In other words, the first number received is the
number of positive integers for which to compute gcd, followed by the actual
integers separated by spaces. To read numbers from stdin you may use the
getnum() function provided via the course web page.

4 Design Evaluation

There are several important measures that characterize a design. Performance,
chip area (cost) and power consumption are arguably the most interesting for
embedded systems. Throughout these labs we will focus on performance (or
speed) and cost (cell count or device utilization in the FPGA case). Your job as
a designer is to examine several solutions in order to maximize the performance
and decrease the cost. Power and energy consumption should also be taken into
consideration when comparing your solutions.

While the device utilization is easily determined from the Vivado implemen-
tation reports, design performance depends both on the algorithm and clock
frequency. Finally, for a fixed clock frequency, the interesting parameter is the
number of clock cycles required to perform a certain operation. For this it is
enough to use a dedicated clock counter IP, available in Vivado under the name
axi timer. On the software side (SDK), you will need to make sure your pro-
grams enable the counter (with auto-load on) before you can start to read the
counter values. You may configure the timer at runtime either by:

a a low level approach: directly writing at the addresses at which the IP
registers are mapped, by using xio.h macros, or by

b higher level API: using more specialized macros/functions provided by
the higher level device drivers for the timer core, see e.g. xtmrctr.h.

note In SDK there is an easy way to inspect API description and even examples
for the IPs included in the architecture. These can be found in the bsp
projects associated with the hardware platform, in the BSP Documenta-
tion folder.

Using higher level drivers is preferred since it makes the code easier to read.
Some of the useful macros and functions in this case are

• XTmrCtr Initialize

• XTmrCtr Start

2

http://cs.lth.se/english/course/edan15_design_of_embedded_systems/labs/assignments/

• XTmrCtr GetValue

but you will need to figure out how to use these by looking at the examples (e.g.
the polled version)!

5 Assignment

Your assignment revolves around designing and evaluating two GCD algorithms
on the hardware architecture described above, based on a single CPU. More
precisely you should carry out the following tasks:

1. Write two GCD algorithms (the näıve one plus another one) for N numbers
(read from the UART, as specified in section 3).

note In a later lab you will need to implement a GCD algorithm in hard-
ware, so it is recommended to choose your algorithms wisely at this
point. See Final Remarks & Hints.

2. Use the timer IP via code for measuring the clock cycles required by your
solution. Make sure you can record the computation time rather than the
time required to read the data from the UART. You should attempt to
split the program in an ”input” phase in which you read all the numbers,
a ”compute” phase in which you carry out the GCD algorithm and an
”output” phase.

3. Record the device utilization for your design.

4. Record the number of clock cycles required by your solution for all the
data sets provided on the course web page. Do this for different com-
piler optimization levels: O0, O1, and O2 (In SDK, these settings can
be changed via Project→Properties for your application. Open the
C/C++ Build and then Settings in the Properties dialog box. Find
the MicroBlaze gcc compiler/Optimization folder under the Tool Settings
tab.)

5. Record the power consumption and compute the energy consumption
for a few input data sets and compiler optimization levels. Recall that
Energy = Power×Time, but for Time you may use the number of clock
cycles, since all future labs will run at the same clock speed.

6. Think of ways to optimize your design, in principle for minimizing the
execution time and the device utilization. Attempt to put some of these
ideas in practice.

7. Make sure you save enough of this data, required by your final lab report.

3

6 Final Remarks & Hints

• print() is only able to print strings. To be able to print numbers you
should use xil printf(), which is similar to the classic C printf(), except
with reduced functionality.

• print functions are also using the uart, thus taking a rather long time to
complete. Make sure your time measurement does not include printing, or
the results will be dominated by the communication time.

• Considering the relatively long delay for test running a program on the
FPGA (involving Hw synthesis and getting hold of one of the shared
boards), try to develop the software as much as possible on another target
(Linux, Windows, . . .). It is much easier to identify faults if you know
which parts do work correctly.

• Be aware that in the later laboratory sessions you will have to design,
simulate, and test a GCD in hardware. Note that some operations are
rather hard, costly or even infeasible to fully implement in hardware (i.e.
division or modulo), and therefore you might need to change your choice of
GCD algorithm at that point. Comparing different algorithms on different
platforms is pointless, so you will have to choose your GCD algorithms
(the non-näıve one) such that it is feasible in hardware, to make use of it
later on. A good algorithm for hardware implementation is, for instance,
the binary (bitwise) GCD, using only bit shifts and arithmetic operations.

• Use rather large data sets (around ten 4–digit numbers) which you should
also store in files, to be able to test your future designs with the same
input data. We recommend you use the data sets available on the course
web page, to make it easier to compare your solution to other groups’
solutions.

4

http://cs.lth.se/english/course/edan15_design_of_embedded_systems/labs/assignments/
http://cs.lth.se/english/course/edan15_design_of_embedded_systems/labs/assignments/

	Introduction
	Greatest Common Divisor
	Base Architecture
	Design Evaluation
	Assignment
	Final Remarks & Hints

