
2002-05-02 1

Interface Synthesis

Kris Kuchcinski

Krzysztof.Kuchcinski@cs.lth.se

2002-05-02 2

Communication Synthesis

❚ After system partitioning we got a set of tasks assigned
to system components (processors executing software +
hardware components); these processes are
communicating through abstract channels.

❚ Tasks are also interacting with peripheral devices and
other external interfaces.

❚ Communication synthesis has to generate hardware and
software which interconnects the system components
and enables processes to communicate with each other,
with peripheral devices and other interfaces.

2002-05-02 3

Communication Synthesis (cont’d)

❚ Communication synthesis, as a top-down design task, is
performed in three main steps:

❙ Channel binding,

❙ Communication refinement,

❙ Interface generation.

❚ After communication synthesis, the initial system
specification results in a specification which can be
directly synthesised to a physical implementation.

2002-05-02 4

Channel Binding

❚ Abstract channels have to be implemented using
physical communication components:

❙ resources have to be allocated which support
communication throughout the system,

❙ abstract channels have to be partitioned and the
resulted groups are bound to the allocated resources,

❙ messages corresponding to channels in one group
are multiplexed on a shared communication
component.

2002-05-02 5

Channel Binding (cont’d)

❚ The main criteria used for channel grouping is to avoid
bus conflicts and to reduce the total number of
connecting wires:

❙ group together channels which don’t access
concurrently the bus,

❙ group together channels which are accessed by the
same processes,

❙ depending on its features, a communication unit can
support a certain number of channels to be
multiplexed on it, without reducing the communication
rate below a required minimum.

2002-05-02 6

Channel Binding (cont’d)

task_2

task_1

hardware
implementation

software
implementation

task_4

task_3

task_6

task_5

task_8

task_7

channel
binding



2002-05-02 7

Channel Binding (cont’d)

task_2

task_1

hardware
implementation

software
implementation

task_4

task_3

task_6

task_5

task_8

task_7

2002-05-02 8

Communication Refinement

❚ After Channel binding the interconnection topology of
the system is known and it is determined which
channels are bound to a given communication support.

❚ Communication is still quite abstract and has to be
refined with several implementation details:

❙ the width of the communication lines has to be
determined, depending on constraints concerning
data transfer rates, number of available pins, cost,

❙ if communication buses are shared, an adequate
control strategy has to be decided,

❙ a communication protocol has to be defined for each
communication link.

2002-05-02 9

Interface Generation

❚ The interfaces needed for a correct functionality of the
system can be generated; both software and hardware
components have to be generated:

❙ access routines inside the communicating tasks
(expanded as executable code in software or as
hardware specification in hardware components),

❙ controllers (buffers, FIFO queues, arbitration logic)
implement correct access to communication support,

2002-05-02 10

Interface Generation (cont’d)

❙ adapters needed to interface components which use
incompatible protocols,

❙ device drivers to support access to peripheral
devices and application specific interfaces,

❙ low level support for communication related tasks
(interrupt control, DMA, memory mapped I/O).

2002-05-02 11

Interface Generation

task_2
adapter

task_1

driver
glue logic

controller

hardware
implementation

software
implementation

ac
c.

ro
ut

.

O
S

task_4

task_3

ac
c.

ro
ut

.

ac
c.

ro
ut

.

bu
s

ac
c.

task_6

task_5

ac
c.

ro
ut

.

bu
s

ac
c.

task_8

task_7

ac
c.

ro
ut

.

bu
s

ac
c.

2002-05-02 12

Buses and Protocols

❚ A bus consists of wires connecting two or more
processors or memories.

❚ Each wire in a bus may be uni-directional (e.g. rd/wr,
enable or addr), or bi-directional (e.g., data).

❚ A bus has an associated protocol describing the rules
for transferring data over the wires.

Processor
Memory

rd/wr

enable
addr

data

G. Vahid and T. Givargis, “Embedded System Design:
A Unified Hardware/Software Approach”, Draft of the book, 1999.bus



2002-05-02 13

Buses and Protocols

❚ Bus protocols usually described using timing diagrams.

❚ For a purpose of automatic synthesis other methods are
also proposed:

❙ HDL descriptions,
❙ grammar based descriptions.

❚ Verification of protocols:
❙ timing properties,

❙ deadlock,

❙ ...

2002-05-02 14

Timing Diagrams

write protocol

rd'/wr

enable

addr

data

tsetup twrite

❚ Most common hardware protocol

❚ Bus cycle
❙ Possible subprotocol

❘ e.g., read protocol or write protocol

❙ Complete transfer
❙ May be several clock cycles

❚ Active high vs. active low
❙ “Assert” means active

❚ Read protocol example:
❙ rd’/wr set low
❙ address placed on addr by

processor for at least tsetup time
before enable set high

❙ high enable triggers memory to
place data on data wires by time tread

read protocol

rd'/wr

enable

addr

data

tsetup tread

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

Vahid/Givargis

2002-05-02 15

Protocol Basics — Time-multiplexing

Master
data(15:0)

mux

Slave
data(15:0)

demux

req

data serializing

Master

mux

Slave

demux

req

addr data addr data

address/data serializing

req req

data 15:8 7:0 addr/ data addr data

2002-05-02 16

Protocol Control Methods

❚ Strobe protocol — the master uses one control line,
often called the request line, to initiate the data transfer,
and the transfer is considered to be complete after some
fixed time interval after the initiation.

❚ Handshake protocol — master uses a request line to
initiate the transfer, and the slave uses an acknowledge
line to inform the master when the data is ready.

2002-05-02 17

Protocol Control Methods

Master Slavereq

req

data

data

①

②

③

④

1. Master asserts req to receive data
2. Slave puts data on bus and asserts ack
3. Master receives data and deasserts req
4. Slave ready for next request

1. Master asserts req to receive data
2. Slave puts data on bus within time taccess
3. Master receives data and deasserts req
4. Slave ready for next request

Master Slavereq

data

ack

data

② ④

req
①

③

ack

strobe handshaking

tacsess

2002-05-02 18

ISA bus protocol – memory access
Microprocesso

r
Memory I/O Device

ISA bus

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3
C4

DATA

❚ ISA: Industry Standard
Architecture

❙ Common in 80x86’s

❚ Features

❙ 20-bit address
❙ Compromise

strobe/handshake control
❘ 4 cycles default

❘ Unless CHRDY deasserted –
resulting in additional wait cycles
(up to 6)

memory-read bus cycle

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMW

CHRDY

C1 C2 WAIT C3
C4

DATA

ADDRESS

memory-write bus cycle

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

Vahid/Givargis



2002-05-02 19

Microprocessor interfacing: I/O addressing

❚ A microprocessor communicates with other devices
using some of its pins

❙ Port-based I/O (parallel I/O)
❘ Processor has one or more N-bit ports

❘ Processor’s software reads and writes a port just like a register

❘ E.g., P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports

❙ Bus-based I/O
❘ Processor has address, data and control ports that form a single bus

❘ Communication protocol is built into the processor

❘ A single instruction carries out the read or write protocol on the bus

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

Vahid/Givargis
2002-05-02 20

Compromises/extensions

❚ Parallel I/O peripheral

❙ When processor only supports bus-based
I/O but parallel I/O needed

❙ Each port on peripheral connected to a
register within peripheral that is read/written
by the processor

❚ Extended parallel I/O
❙ When processor supports port-based I/O

but more ports needed

❙ One or more processor ports interface with
parallel I/O peripheral extending total
number of ports available for I/O

❙ e.g., extending 4 ports to 6 ports in figure

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-
based I/O processor

Processor

Parallel I/O peripheral

Port A Port BPort C

Port 0
Port 1
Port 2
Port 3

Extended parallel I/O

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

Vahid/Givargis

2002-05-02 21

Interrupts

❚ The communication with a device which produces data
asynchronously requires a new communication
paradigm.

❚ Polling — repeatedly check whether data is available at
the port (waste of time).

❚ Interrupts — the microprocessor checks for the
presence of a particular condition (similar to events in
some languages).

❚ If interrupt then a Interrupt Service Routine (ISR) is
called automatically.

2002-05-02 22

Interrupt Service Routine

Program memory

ISR
16: MOV R0, 0x8000
17: # somehow modifies R0
18: MOV 0x8001, R0
19: RETI # return from int
…

Main application program
100: # some instruction
101: # some instruction
102: # some instruction PC

Int

CPU

Peripheral 1

0x8000
register

Peripheral 2

0x8001
register

Data Memory

1. Microprocessor is executing its program, say current program counter (PC)=100.
2. Peripheral 1’s input device stores new data in register at 0x8000.
3. Peripheral 1 asserts Int to request servicing by microprocessor of the new data.
4. Microprocessor stops executing its program and stores state, including PC.
5. Microprocessor jumps to fixed location of ISR at program memory location 16 (sets PC=16)
6. ISR reads data from 0x8000, modifies the data, and writes to 0x8001.
7. ISR returns, causing restoration of the microprocessor state, thus setting PC= 100+1 = 101
8. Microprocessor resumes executing its program.

2002-05-02 23

Interrupts (cont’d)

❚ Fixed address for ISR.

❚ Vectored interrupt make it possible to determine the
address at which the ISR resides

❙ peripheral asserts IntReq,
❙ processor acknowledges IntAck that the interrupt has

been detected,
❙ the peripheral provides the address on the data bus,

and the microprocessor jumps to the ISR.

❚ Interrupt address table — the peripheral provides int and
the interrupt number and the processor decodes it using
the table.

2002-05-02 24

Additional interrupt issues

❚ Maskable vs. non-maskable interrupts
❙ Maskable: programmer can set bit that causes processor to

ignore interrupt
❘ Important when in the middle of time-critical code

❙ Non-maskable: a separate interrupt pin that can’t be masked
❘ Typically reserved for drastic situations, like power failure requiring immediate backup

of data to non-volatile memory

❚ Jump to ISR
❙ Some microprocessors treat jump same as call of any

subroutine
❘ Complete state saved (PC, registers)

❙ Others only save partial state, like PC only
❘ Thus, ISR must not modify registers, or else must save them first
❘ Assembly-language programmer must be aware of which registers stored

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

Vahid/Givargis



2002-05-02 25

Direct Memory Access

❚ DMA controller — single-purpose processor which
transfers data between memories and peripherals
“outside” the processor.

❚ Steels memory access cycles from processor while
needed.

❚ Does not require interventions from processor and
overhead of interrupted program.

❚ DMA usually transfers block of data.

2002-05-02 26

Direct Memory Access

Program memory

No ISR needed

…

Main application program
100: # some instruction
101: # some instruction
102: # some instruction PC

Hreq

CPU

DMA ctrl

0x0001

Peripheral

0x8000
data

Data Memory

0x8000

Hlda

0x0000 0x0001 ...

1. Microprocessor is executing its program, say current program counter (PC)=100.
2. Peripheral’s input device stores new data in register at 0x8000.
3. Peripheral asserts Dreq to request servicing of the new data.
4. DMA controller asserts Hreq to request control of the system bus.
5. Microprocessor relinquishes system bus, perhaps stopping after executing statement 100.
6. DMA controller reads data from 0x8000 and writes that data to 0x0001 in data memory.
7. DMA controller deasserts Hreq and completes handshake with peripheral.
8. Microprocessor resumes executing its program, perhaps starting with statement 101.

Dreq

2002-05-02 27

Bus Arbitration

❚ Multiple peripherals might request service from a single
resource, for example a bus.

❚ Priority arbiter — decides to whom the resource is
granted.

❚ Arbitration method:

❙ fixed priorities between peripherals,

❙ rotating priorities (round-robin) — the arbiter changes
priority of peripherals based on the history of
servicing of those peripherals.

2002-05-02 28

Bus Arbitration

Int

CPU

Peripheral 2

Inta

Peripheral 1

Priority
arbiter

Ireq1
Iack1

Ireq2
Iack2

1. Microprocessor is executing its program.
2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.
3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.
4. Microprocessor stops executing its program and stores its state.
5. Microprocessor asserts Inta.
6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.
7. Peripheral1 puts its interrupt address vector on the system bus
8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns

(and completes handshake with arbiter).
9. Microprocessor resumes executing its program.

2002-05-02 29

Daisy-chain arbitration

Int

CPU

Inta
Peripheral 1

Req_out

Ack_in

Req_in

Ack_out

Peripheral 2

Req_out

Ack_in

Req_in

Ack_out
0

❚ A peripheral asserts its request output if it requires
servicing, OR if its request input is asserted.

❚ The microprocessor gets only one request.
❚ When Ack_in arrives the peripheral which

requested the service proceeds to put its interrupt
vector address on the system bus; if it did not
requested the service, it passes the Ack_out
upstream to the next peripheral.

2002-05-02 30

Daisy-chain arbitration logic

Adding logic to make a peripheral daisy-chain aware

µP
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in

Req_out

Peripheral3

Ack_in Ack_out

Req_out Req_in 0



2002-05-02 31

Multilevel bus architectures

❚ If single bus used for all communication
❙ Peripherals required to have high-speed, processor-specific bus

interface
❘ excess gates, power consumption, cost
❘ less portable

❙ Too many peripherals slows down bus

❚ Processor-local bus
❙ High speed, wide, most frequent communication

❙ Connects microprocessor, cache, memory controllers, etc.

❚ Peripheral bus
❙ Lower speed, narrower, less frequent communication

❙ Typically industry standard bus (ISA, PCI) for portability

❚ Bridge
❙ Single-purpose processor converts communication between busses

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

2002-05-02 32

A two-level bus architecture

Processor-local
bus

Micro-
processor

Cache Memory
controller

DMA
controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000

Vahid/Givargis

2002-05-02 33

Protocol examples

❚ I2C (Inter-IC) - two-wire serial bus protocol developed by Philips
Semiconductors nearly 20 years ago
❙ Data transfer rates up to 100 kbits/s and 7-bit addressing

possible in normal mode
❙ 3.4 Mbits/s and 10-bit addressing in fast-mode

❚ CAN (Controller area network)
❙ Protocol for real-time applications
❙ Developed by Robert Bosch GmbH

❙ Originally for communication among components of cars
❙ Data transfer rates up to 1 Mbit/s and 11-bit addressing

2002-05-02 34

Protocol examples (cont’d)

❚ FireWire (a.k.a. I-Link, Lynx, IEEE 1394)
❙ High-performance serial bus developed by Apple Computer Inc.

❙ Designed for interfacing independent electronic components (e.g.,
desktop, scanner, cameras)

❙ Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing

❚ USB (Universal Serial Bus)

❙ Easier connection between PC and monitors, printers, digital speakers,
modems, scanners, digital cameras, joysticks, multimedia game
equipment

❙ 2 data rates:
❘ 12 Mbps for increased bandwidth devices

❘ 1.5 Mbps for lower-speed devices (joysticks, game pads)

❚ PCI Bus (Peripheral Component Interconnect) - high performance bus
originated at Intel in the early 1990’s

❙ Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing
❘ Later extended to 64-bit while maintaining compatibility with 32-bit schemes

2002-05-02 35

Protocol examples (cont’d)

❚ ARM Bus
❙ Designed and used internally by ARM Corporation

❙ Interfaces with ARM line of processors
❙ Data transfer rate is a function of clock speed

❘ If clock speed of bus is X, transfer rate = 16 x X bits/s

❚ IrDA
❙ Protocol suite that supports short-range point-to-point infrared

data transmission
❙ Created and promoted by the Infrared Data Association (IrDA)
❙ Data transfer rate of 9.6 kbps and 4 Mbps

2002-05-02 36

Protocol examples (cont’d)

❚ Bluetooth
❙ New, global standard for wireless connectivity
❙ Based on low-cost, short-range radio link

❚ IEEE 802.11
❙ Proposed standard for wireless LANs

❙ provisions for data transfer rates of 1 or 2 Mbps



2002-05-02 37

Summary

❚ Interface design is a challenging design step which
requires a deep knowledge on underlying hardware
communication devices.

❚ On the top level we distinguish
❙ Channel binding,
❙ Communication refinement,
❙ Interface generation.

❚ The deep knowledge hardware properties, such as
communication protocols, interrupts, DMA, arbiters is,
however, needed to make these steps efficient.

2002-05-02 38

Literature

❚ Course book - Chapters 3.2, (3.3), 4.2, 4.3, 4.5

❚ P. Eles, K. Kuchcinski and Z. Peng, System Synthesis
with VHDL, Kluwer Academic Publisher, 1998.

❚ F. Vahid and T. Givargis, Embedded System Design: A
Unified Hardware Software Approach, John Wiley &
Sons; ISBN: 0471386782. Copyright (c) 2002.


