
1

2014-08-26 1

Allocation, Assignment and
Scheduling

Kris Kuchcinski

Krzysztof.Kuchcinski@cs.lth.se

2014-08-26 2

Allocation of System Components

❚  Defines an architecture by selecting hardware resources
which are necessary to implement a given system.

❚  The components can be, for example, microprocessors,
micro-controllers, DSP’s, ASIP’s, ASIC’s, FPGA’s,
memories, buses or point-to-point links.

❚  Usually made manually with a support of estimation
tools.

❚  In simple cases can be performed automatically using
optimization strategy.

2014-08-26 3

Assignment of System Components

❚  After allocation the partitioning of system functionality to
selected components can be done.

❚  The partitioning defines the assignment of tasks to
particular components.

❚  If there is number of tasks assigned to the same
component, which does not support parallel execution,
the execution order need to be decided — task
scheduling.

2014-08-26 4

Scheduling

❚  Depending on the computation model scheduling can be
done off-line or during run-time.

❚  Static vs. dynamic scheduling.

❚  RTOS support for dynamic scheduling.

❚  Scheduling can address advanced execution
techniques, such as software pipelining.

❚  Can be applied to tasks allocated to hardware, software
as well as hardware operations and software
instructions.

2014-08-26 5

Scheduling

❚  Data-flow scheduling (SDF, CSDF)
❙  static assignment of the instants at which the

execution takes place,
❙  time-constrained and resource-constrained,
❙  typical for DSP applications (hw and sw).

❚  Real-time scheduling
❙  periodic, aperiodic and sporadic tasks,
❙  independent or data-dependent tasks,
❙  based on priorities (static or dynamic).

2014-08-26 6

Scheduling Approaches

❚  Static scheduling
❙  static cycling scheduling

❚  Dynamic scheduling
❙  fixed priorities — e.g., rate monotonic
❙  dynamic priorities — e.g., earliest deadline first

2

Synthesis of the following code
(inner loop of differential equation integrator)

while c do
 begin
 x1 := x + dx;
u1 := u - (3 * x * u * dx) - (3 * y * dx);
y1 := y + (u * dx);
c = x < a;
x := x1; u := u1; y := y1;
 end;

7

High-Level Synthesis Scheduling

8

High-Level Synthesis Scheduling (cont’d)

3 x u dx 3 y u dx x dx

y1 c

x1 a dx y
* * * *

* *
u

-

u1

-

+

+

<

data-flow graph

3 x u dx 3 y u dx x dx

y1

c

x1 a

dx

* *

*

* *

*
u

-

u1

- +

+

<

scheduled
data-flow graph

register
allocation

x u y dx

2014-08-26 9

HLS typical process	

❚  Behavioral specification
❙  Language selection
❙  Parallelism
❙  Synchronization

procedure example;
 var a, b, c, d, e, f, g : integer;
 begin
 read(a, b, c, d, e);
 f := e * (a + b);
 g := (a + b) * (c + d);
 ...
 end;

2014-08-26 10

HLS typical process (cont’d)

❚  Design Representation
❙  parsing techniques
❙  data-flow analysis
❙  parallelism extraction
❙  program transformations

❘  elimination of high-level constructs
❘  loop unrolling
❘  subexpression detection

+

E A B C D

+

x x

F G

2014-08-26 11

HLS typical process (cont’d)

❚  Operation Scheduling
❙  Parallelism/cost trade-off
❙  Performance measure
❙  Clocking strategy +

E A B C D

+

x x

F G

2014-08-26 12

HLS typical process (cont’d)

❚  Data Path Allocation
❙  Operation selection
❙  Register/Memory allocation
❙  Interconnection Generation
❙  Hardware Minimization

3

2014-08-26 13

Data Path Allocation

+*

E<0:7> A<0:7> B<0:7>C<0:7> D<0:7>

FG

Reg. R1

M1

Reg. R3

M3

Reg. R4

M4

Reg. R2

M2

Data part

Load R3 Load R4

Add, Load R2

Load R1, R3, R4

Add, Load R1

Mul, Load R4

Mul, Load R2
Control part

2014-08-26 14

HLS typical process (cont’d)

❚  Control Allocation
❙  Selection of control

style (PLA, random logic, etc.)
❙  Clock implementation
❙  Signal/condition design

2014-08-26 15

Control Allocation

+*

E<0:7> A<0:7> B<0:7>C<0:7> D<0:7>

FG

Reg. R1

M1

Reg. R3

M3

Reg. R4

M4

Reg. R2

M2

S0: Start next S1;"
S1: M3, Load R3, M4=0, Load R4 next S2;"
S2: Add, ¬M2, Load R2, ¬M1, Load R1, ¬M3, Load R3, M4=1, Load R4 next S3;"
S3: Add, M1, Load R1, Mul, M4=2, Load R4 next S4;"
S4: Mul, M2, Load R2 next ..."

"
	

Control description (FSM)

2014-08-26 16

Module Binding	

E<0:7> A<0:7> B<0:7>C<0:7> D<0:7>

FG

Reg. R1 Reg. R3 Reg. R4Reg. R2

Adder 8Mul 8

M1 M2 M3 M4
Control ROM	

0000: 11000000 0001���
0001: 00100000 0010���
0010: 00011000 0011���
0011: 01000000 0100���
...	

2014-08-26 17

ASAP Scheduling

10 9

8 7 6

5 4 3 2 1
+ +

+

+

-

x x

x x

DFG

+

10

9

8

7

6

5

4

3

2

1
+

+

+

+

-

x

x

x

x

+

ASAP schedule

Control
step

5

4

3

2

1

6

7
2014-08-26 18

ALAP Scheduling

10 9

8 7 6

5 4 3 2 1
+ +

+

+

-

x x

x x

DFG

+

10

9 8

7

6 5

4 3

2

1
+

+

+

+

-

x

x

x

x

+

ALAP schedule

Control
step

5

4

3

2

1

6

4

2014-08-26 19

List Scheduling

❚  Constructive scheduling algorithm which selects
operation to be assigned to control steps based on a
priority function.

❚  Priority function can be different in different versions of
list scheduling algorithms:
❙  higher priority to operations with low mobility, or
❙  higher priority to operations with more immediate

successors,
❙  length of the path from the operation to the end of the

block,
❙  ...

2014-08-26 20

List Scheduling

10 9

8 7 6

5 4 3 2 1
+ +

+

+

-

x x

x x

DFG

+

10

9 8

7

6

5 4

3

2

1
+

+

+

+

-

x

x

x

x

+

List schedule

Control
step

5

4

3

2

1

6

2014-08-26 21

Force-Directed Scheduling

❚  The basic strategy is to place similar operations in
different control steps to balance the concurrency of the
operations without increasing the total execution time.

❚  By balancing the concurrency of operations, it is
ensured that each functional unit has a high utilization
and therefore the total number of units required is
decreased.

❚  Three main steps:
❙  determine the time frame of each operation,
❙  create a distribution graph, and
❙  calculate the force associated with each assignment.

2014-08-26 22

Time Frame of Each Operation

10 9

8 7 6

5 4 3 2 1
+ +

+

+

-

x x

x x

+

Control
step

4

3

2

1

ALAP schedule ASAP schedule

10 9

8

7

6 5

4 3

2

1
+

+

+

+

-

x x

x

x +

2014-08-26 23

Distribution Graph

DGmult(1) = 1/2 + 1/3 = 0.833
DGmult(2) = 1/2 + 1/ 3 = 0.833
DGmult(3) = 1/2 + 1/2 + 1/3 = 1.333
DGmult(4) = 1/2 + 1/2 = 1

Control step

4

3

2

1

1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 1/2

+

1

-

6

x

9

+

2

+

7

x

3

+

8

+

4

x

10

x

5

2014-08-26 24

Distribution Graph (cont’d)

Control step

4

3

2

1

Multiplication DG Addition/Subtraction DG

5

2014-08-26 25

Force Calculation

❚  the force associated with the tentative assignment of
an operation to c-step j is equal to the difference
between the distribution value in that c-step and the
average of the distribution values for the c-steps
bounded by the operation’s time frame.

∑
= +−

−=
t

fi ft
iDGjDGjForce
)1(
)()()(

❚  assignment of operation 10 to control step 3

Force(3) = DGmult(3) - average DGmult value over time
frame of operation 10 = 1.333 - (1.333 + 1)/2 = 0.167,
Force(4) = -0.167

2014-08-26 26

Forced Directed Scheduling Algorithm

❚  Once all the forces are calculated, the operation-control
step pair with the lowest force is scheduled.

❚  The distribution graphs and forces are then updated and
the above process is repeated until all operations are
scheduled.

2014-08-26 27

Advanced Scheduling Topics

❚  Control constructs
❙  conditional sharing — sharing of resources for

mutually exclusive operations,
❙  speculative execution.

❚  Chaining and multi-cycling.

❚  Pipelined components.

❚  Pipelining.

❚  Registers and memory allocation.

❚  Low-power issues.

2014-08-26 28

Conditional Dependency Graph

+

+

+

+

&

&
h3

h10

&

&

h1 not

h7

not

2014-08-26 29

Guard Hierarchy and
Mutually Exclusive Guards

&
h1

&
h3

&
h5

&
h2

&
h7 &

h8 &
h6

&
h10

&
h9

Guard Hierarchy Mutually Exclusive Guards

h10 h3, h6, h9
h1
h2 h3
h3 h10, h2, h6, h7, h8, h9
h5 h9
h6 h10, h3, h7, h9
h7 h3, h6
h8 h3, h9
h9 h10, h3, h5, h6, h8

& & &

&

2014-08-26 30

Conditional Resource Sharing

x

+ +

 not c

c
x

+ +

 not c
c

adder multiplier

6

2014-08-26 31

Speculative Execution

x

+

c

x

+ c

adder multiplier ALU

speculatively
executed operation

2014-08-26 32

Chaining and multicycling

+

+

x

100 ns

200 ns

+

+

x

100 ns

+

+

x

100 ns

50 ns

Chaining

Multicycle

2014-08-26 33

Pipelined Components

+

+

x

100 ns

50 ns

x

multiplier 1

2014-08-26 34

Fifth Order Elliptic Wave Filter DFG

+
+

+
+

+

+
+ +

+

+
+

+
+ +

+
+ +

+ +
+

+ +
+ +

+

+

x x

x x

x
x x

x

i1 i2 i3 i4 i5 i6

i7 i8

2014-08-26 35

Pipelining — Example

36

Scheduling of H.261
Video Coding Algorithm

Texec = 2963, T10exec = 29630

7

37

Scheduling of H.261
Video Coding Algorithm

Texec = 3373, T pipe init = 1154, T10exec = 13759
2014-08-26 38

Real-Time Scheduling

❚  System is a set of tasks
❙  tasks have known execution times (usually WCET)

❚  Tasks are enabled by repeating events in the
environment
❙  some known timing constraints

❚  Task executions must satisfy timing requirements

❚  Single processor (hard)
❙  multiprocessors — much harder, mostly negative

results (e.g. NP-hardness)

2014-08-26 39

Scheduling Policies

❚  Static (pre-run-time, off-line)
❙  round-robin,
❙  static cyclic.

❚  Dynamic (run-time, on-line)
❙  static priority,
❙  dynamic priority,
❙  preemptive or not.

2014-08-26 40

Assumptions and Definitions

❚  Fixed number of periodic and independent tasks.
❚  Parameters:

❙  execution period — T
❙  worst-case execution time — C
❙  execution deadline — D
❙  usually assumed that T=D

Ti

Ci Di

task i

2014-08-26 41

Static Scheduling

❚  Round-robin:
❙  pick an order of tasks, e.g. A B C D,
❙  execute them forever in that order.

❚  Static cyclic:
❙  pick a sequences of tasks, e.g. A B C B D,
❙  execute that sequence forever.

❚  Much like static data-flow.
❚  If there are arbitrary task periods the schedule duration

is equal least common multiplier (LCM) of task periods
(MPEG 44.1 kHz * 30 Hz requires 132 300 repetitions).

❚  Problem with sporadic tasks.
2014-08-26 42

Dynamic Scheduling — Static Priorities

❚  Priorities are assigned to tasks off-line.
❚  A task with the highest priority is always executed

among enabled tasks.
❚  Single processor execution.

❚  Preemptive schedule.

❚  Rate Monotonic Scheduling (RMS) — a task with a
shorter period is assigned a higher priority.

❚  RMS is optimal — no fixed priority scheme does better.

8

2014-08-26 43

Rate Monotonic Scheduling- An Example

Task2
Task1

T2
T1

20ms 40ms

Priority(Task1) < Priority(Task2)

Task2
Task1

2014-08-26 44

Rate Monotonic Scheduling

❚  Utilization

❚  All deadlines met when utilization ≤ n(21/n- 1)
❙  For n=2, 2*(2 1/ 2-1) = 0.83,
❙  For n → ∞ , n(21/n- 1) → ln(2) = 0.69

❚  An example

❚  0.753 < 0.779 (=3*(21/3 -1) => tasks are schedulable

∑=
i i

i

T
CnUtilizatio

Task Period (T) Rate (1/T) Exec Time (C) Utilization(U)

1 100 ms 10 Hz 20 ms 0.2
2 150 ms 6.67 Hz 40 ms 0.267

3 350 ms 2.86 Hz 100 ms 0.286

2014-08-26 45

Rate Monotonic Scheduling Implementation

❚  Table of tasks with a task priority and its state (enables,
etc.).

❚  At context switch select the task with the highest priority.

❚  Linear complexity, O(n) where n = number of tasks.

2014-08-26 46

Critical sections

❚  Access to a shared resource should be mutually
exclusive to access a resource
❙  lock the resource → critical section starts

❘  may fail and block the task

❙  process the resource
❙  unlock the resource critical section ends

C1 C2 Task

2014-08-26 47

Rate Monotonic Scheduling — Problems

❚  Static cyclic scheduling is better if possible.
❚  Critical sections in tasks and communication create

problems
❙  Deadlock
❙  Priority inversion

❚  Methods for solving priority inversion problem
❙  priority inheritance,
❙  priority ceiling protocol.

2014-08-26 48

Deadlock

C2 C1

C1 C2

Priority H

Priority L

Priority H

Priority L C1

C2
Deadlock

9

2014-08-26 49

Priority Inversion

C

C

Priority H

Priority L
Priority M

Priority H

Priority L
Priority M

C

C

Priority inversion

C C

2014-08-26 50

Priority Inheritance

❚  When a job Ji tries to enter a critical section and it is already locked
by a lower priority task Jk then Ji waits and Jk inherits the priority of Ji

❚  The queue of jobs waiting for a resource is ordered by decreasing
priority

❚  Priority inheritance is transitive.
❚  At any time, the priority at which a critical section is executed is

always equal to the highest priority of the jobs that are currently
blocked on it.

❚  When a job exits critical section it usually resumes the priority it had
when it entered critical section.

❚  When released, a resource is granted to the highest priority job, if any
waiting for it.

2014-08-26 51

Priority Inheritance Protocol

C

C

Priority H

Priority L
Priority M

Priority H

Priority L
Priority M

C

C

ceiling(C) =H

priority H
2014-08-26 52

Priority Inversion — problems

❚  Chained blocking:
❙  a job can have several critical sections,
❙  it can be blocked whenever it wants to enter a critical

section
❙  this generates overhead in terms of task switching.

❚  The main idea is to reduce the occurrence of priority
inversions by preventing multiple priority inversions; a
job will be blocked at most once before it enters its first
critical section.

❚  The solution prevents deadlock.

2014-08-26 53

Priority ceiling protocol

❚  Assumptions
❙  a task cannot voluntarily suspend itself,
❙  semaphores cannot be held between invocations,
❙  semaphores must be locked in a nested manner.

❚  Protocol
❙  Every CS has a ceiling: priority of a highest task that may

enter it,
❙  A task is allowed into a CS only if its priority is higher than

ceilings of all active CS’s,
❙  If task A is blocking some higher priority task B, then A gets

the priority of B while in CS.

2014-08-26 54

Dynamic Scheduling — Dynamic Priorities

❚  Dynamic priorities needed since sometime static
priorities might not meet deadlines

❚  An Example

 C1=2, T1=5

 C2=4, T2=7

Task1
Task2

2 5 7

10

2014-08-26 55

Earliest Deadline First

❚  Minimizes number of missed deadlines.
❚  Tasks with earliest deadline has priority.

❚  An Example

❚  Any sequence is optimal that puts the jobs in order of
non-decreasing deadlines

Task2
Task1

2 5 7 14 10

C1=2, T1=5
C2=4, T2=7

2014-08-26 56

Earliest Deadline First

❚  EDF can achieve 100% utilization until overload occurs.
❚  Cannot guarantee meeting deadlines for arbitrary data

arrival times.
❚  An example

Task Period (T) Rate (1/T) Exec Time (C) Utilization (U)

A 20 ms 50 Hz 10 ms 0.5

B 50 ms 20 Hz 25 ms 0.5

A1 A2

0 10 20 30 40 50 60 70 80 90 100

A1 B1 A2 A3 A4 A5,B2

B1 A3 B1 B2 A4 B2 A1

2014-08-26 57

Earliest Deadline First

❚  Additional assumptions
❙  arbitrary release times and deadlines, and
❙  arbitrary and unknown (to the scheduler) execution

times.

❚  The EDF algorithm is optimal in that if there exist any
algorithm that can build a valid (feasible) schedule on a
single processor, then the EDF algorithm also builds a
valid (feasible) schedule.

2014-08-26 58

Earliest Deadline First Implementation

❚  At each preemption, sort tasks by time-to-deadline.
❚  Need for efficient sorting algorithm — O(n logn)

❚  Choose ready task closest to the deadline.

2014-08-26 59

What Is Missing

❚  Data dependencies between tasks
❚  Context switching time (jitter)

❚  Multiprocessor scheduling

❚  Memory considerations

❚  ...

2014-08-26 60

Data dependencies

❚  Data dependencies allow us to
improve utilization.
❙  Restrict combination of processes

that can run simultaneously.
❚  P1 and P2 can’t run simultaneously.

P1

P2

11

2014-08-26 61

Context-switching time

❚  Non-zero context switch time can push limits of a tight
schedule.

❚  Hard to calculate effects -- depends on order of context
switches.

❚  In practice, OS context switch overhead is small.

2014-08-26 62

Literature

❚  P. Eles, K. Kuchcinski and Z. Peng, System Synthesis
with VHDL, Kluwer Academic Publisher, 1998.

❚  Any book on real-time scheduling, e.g.,
Alan Burns and Andy Wellings, Real-Time Systems and
Programming Languages, Addison Wesley, 1996.

