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Allocation of System Components 

❚  Defines an architecture by selecting hardware resources 
which are necessary to implement a given system.  

❚  The components can be, for example, microprocessors, 
micro-controllers, DSP’s, ASIP’s, ASIC’s, FPGA’s, 
memories, buses or point-to-point links. 

❚  Usually made manually with a support of estimation 
tools. 

❚  In simple cases can be performed automatically using 
optimization strategy. 
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Assignment of System Components 

❚  After allocation the partitioning of system functionality to 
selected components can be done. 

❚  The partitioning defines the assignment of tasks to 
particular components. 

❚  If there is number of tasks assigned to the same 
component, which does not support parallel execution, 
the execution order need to be decided — task 
scheduling. 
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Scheduling 

❚  Depending on the computation model scheduling can be 
done off-line or during run-time. 

❚  Static vs. dynamic scheduling. 

❚  RTOS support for dynamic scheduling. 

❚  Scheduling can address advanced execution 
techniques, such as software pipelining. 

❚  Can be applied to tasks allocated to hardware, software 
as well as hardware operations and software 
instructions. 
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Scheduling 

❚  Data-flow scheduling (SDF, CSDF) 
❙  static assignment of the instants at which the 

execution takes place, 
❙  time-constrained and resource-constrained, 
❙  typical for DSP applications (hw and sw). 

❚  Real-time scheduling 
❙  periodic, aperiodic and sporadic tasks, 
❙  independent or data-dependent tasks, 
❙  based on priorities (static or dynamic). 
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Scheduling Approaches 

❚  Static scheduling 
❙  static cycling scheduling 

❚  Dynamic scheduling 
❙  fixed priorities — e.g., rate monotonic 
❙  dynamic priorities — e.g., earliest deadline first 
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Synthesis of the following code 
(inner loop of differential equation integrator) 
 

while c do 
 begin 
 x1 := x + dx; 
u1 := u - ( 3 * x * u * dx) - (3 * y * dx);  
y1 := y + ( u * dx); 
c = x < a; 
x := x1; u := u1; y := y1;  
 end; 
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High-Level Synthesis Scheduling 
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High-Level Synthesis Scheduling (cont’d) 
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HLS typical process	



❚  Behavioral specification 
❙  Language selection 
❙  Parallelism 
❙  Synchronization 

procedure example; 
 var a, b, c, d, e, f, g : integer; 
 begin 
  read(a, b, c, d, e); 
  f := e * (a + b); 
  g := (a + b) * (c + d); 
  ... 
 end; 
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HLS typical process (cont’d) 

❚  Design Representation 
❙  parsing techniques 
❙  data-flow analysis 
❙  parallelism extraction 
❙  program transformations 

❘  elimination of  high-level constructs 
❘  loop unrolling 
❘  subexpression detection 
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HLS typical process (cont’d) 

❚  Operation Scheduling 
❙  Parallelism/cost trade-off 
❙  Performance measure 
❙  Clocking strategy + 

E A B C D 

+ 

x x 

F G 
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HLS typical process (cont’d) 

❚  Data Path Allocation 
❙  Operation selection 
❙  Register/Memory allocation 
❙  Interconnection Generation 
❙  Hardware Minimization 
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Data Path Allocation 
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HLS typical process (cont’d) 

❚  Control Allocation 
❙  Selection of control 

style (PLA, random logic, etc.) 
❙  Clock implementation 
❙  Signal/condition design 
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Control Allocation 

+*

E<0:7> A<0:7> B<0:7>C<0:7> D<0:7>

FG

Reg. R1

M1

Reg. R3

M3

Reg. R4

M4
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S0: Start next S1;"
S1: M3, Load R3, M4=0, Load R4 next S2;"
S2: Add, ¬M2, Load R2, ¬M1, Load R1, ¬M3, Load R3, M4=1, Load R4 next S3;"
S3: Add, M1, Load R1, Mul, M4=2, Load R4 next S4;"
S4: Mul, M2, Load R2 next ..."

"
	

Control description (FSM) 
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Module Binding	



E<0:7> A<0:7> B<0:7>C<0:7> D<0:7>

FG

Reg. R1 Reg. R3 Reg. R4Reg. R2

Adder 8Mul 8

M1 M2 M3 M4
Control ROM	


0000: 11000000 0001���
0001: 00100000 0010���
0010: 00011000 0011���
0011: 01000000 0100���
...	
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ASAP Scheduling 
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ALAP Scheduling 
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List Scheduling 

❚  Constructive scheduling algorithm which selects 
operation to be assigned to control steps based on a 
priority function. 

❚  Priority function can be different in different versions of 
list scheduling algorithms: 
❙  higher priority to operations with low mobility, or 
❙  higher priority to operations with more immediate 

successors, 
❙  length of the path from the operation to the end of the 

block, 
❙  ... 
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List Scheduling 
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Force-Directed Scheduling 

❚  The basic strategy is to place similar operations in 
different control steps to balance the concurrency of the 
operations without increasing the total execution time. 

❚  By balancing the concurrency of operations, it is 
ensured that each functional unit has a high utilization 
and therefore the total number of units required is 
decreased. 

❚  Three main steps:  
❙  determine the time frame of each operation,  
❙  create a distribution graph, and  
❙  calculate the force associated with each assignment. 
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Time Frame of Each Operation 
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Distribution Graph 
 

DGmult(1) = 1/2 + 1/3 = 0.833 
DGmult(2) = 1/2 + 1/ 3 = 0.833 
DGmult(3) = 1/2 + 1/2 + 1/3 = 1.333 
DGmult(4) = 1/2 + 1/2 = 1 
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Distribution Graph (cont’d) 
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Force Calculation 

❚  the force associated with the tentative assignment of 
an operation to c-step j is equal to the difference 
between the distribution value in that c-step and the 
average of the distribution values for the c-steps 
bounded by the operation’s time frame. 

∑
= +−

−=
t

fi ft
iDGjDGjForce
)1(
)()()(

❚  assignment of operation 10 to control step 3 
 

Force(3) = DGmult(3) - average DGmult value over time 
frame of operation 10 = 1.333 - (1.333 + 1)/2 = 0.167, 
Force(4) = -0.167 
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Forced Directed Scheduling Algorithm 

❚  Once all the forces are calculated, the operation-control 
step pair with the lowest force is scheduled.  

❚  The distribution graphs and forces are then updated and 
the above process is repeated until all operations are 
scheduled. 
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Advanced Scheduling Topics 

❚  Control constructs 
❙  conditional sharing — sharing of resources for 

mutually exclusive operations, 
❙  speculative execution. 

❚  Chaining and multi-cycling. 

❚  Pipelined components. 

❚  Pipelining. 

❚  Registers and memory allocation. 

❚  Low-power issues. 
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Conditional Dependency Graph 
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Guard Hierarchy and  
Mutually Exclusive Guards 
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Conditional Resource Sharing 
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Speculative Execution 
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Chaining and multicycling 
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Pipelined Components 

    

+ 

+ 

x 

100 ns 

50 ns 

x 

multiplier 1 

2014-08-26 34 

Fifth Order Elliptic Wave Filter DFG 
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Pipelining — Example 

36 

Scheduling of H.261  
Video Coding Algorithm 

 

Texec = 2963, T10exec = 29630 
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Scheduling of H.261  
Video Coding Algorithm 

 

Texec = 3373, T pipe init = 1154, T10exec = 13759 
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Real-Time Scheduling 

❚  System is a set of tasks 
❙  tasks have known execution times (usually WCET) 

❚  Tasks are enabled by repeating events in the 
environment 
❙  some known timing constraints 

❚  Task executions must satisfy timing requirements 

❚  Single processor (hard) 
❙  multiprocessors — much harder, mostly negative 

results (e.g. NP-hardness) 

2014-08-26 39 

Scheduling Policies 

❚  Static  (pre-run-time, off-line) 
❙  round-robin, 
❙  static cyclic. 

❚  Dynamic (run-time, on-line ) 
❙  static priority, 
❙  dynamic priority, 
❙  preemptive or not. 
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Assumptions and Definitions 

❚  Fixed number of periodic and independent tasks. 
❚  Parameters: 

❙  execution period — T 
❙  worst-case execution time — C 
❙  execution deadline — D 
❙  usually assumed that T=D 

Ti 

Ci Di 

task i 
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Static Scheduling 

❚  Round-robin: 
❙  pick an order of tasks, e.g. A B C D, 
❙  execute them forever in that order. 

❚  Static cyclic: 
❙  pick a sequences of tasks, e.g. A B C B D, 
❙  execute that sequence forever. 

❚  Much like static data-flow. 
❚  If there are arbitrary task periods the schedule duration 

is equal least common multiplier (LCM) of task periods 
(MPEG 44.1 kHz * 30 Hz requires 132 300 repetitions). 

❚  Problem with sporadic tasks. 
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Dynamic Scheduling — Static Priorities 

❚  Priorities are assigned to tasks off-line. 
❚  A task with the highest priority is always executed 

among enabled tasks. 
❚  Single processor execution. 

❚  Preemptive schedule. 

❚  Rate Monotonic Scheduling (RMS) — a task with a 
shorter period is assigned a higher priority. 

❚  RMS is optimal — no fixed priority scheme does better. 
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Rate Monotonic Scheduling- An Example 

Task2 
Task1 

T2 
T1 

20ms 40ms 

Priority(Task1) < Priority(Task2) 

Task2 
Task1 
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Rate Monotonic Scheduling 

❚  Utilization 

❚  All deadlines met when utilization ≤ n(21/n- 1) 
❙  For n=2, 2*(2 1/ 2-1) = 0.83,   
❙  For n → ∞ , n(21/n- 1) → ln(2) = 0.69 

❚  An example 

❚  0.753 < 0.779 (=3*(21/3 -1) => tasks are schedulable 

∑=
i i

i

T
CnUtilizatio

Task Period (T) Rate (1/T) Exec Time (C) Utilization(U)

1 100 ms 10 Hz 20 ms 0.2
2 150 ms 6.67 Hz 40 ms 0.267

3 350 ms 2.86 Hz 100 ms 0.286
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Rate Monotonic Scheduling Implementation 

❚  Table of tasks with a task priority and its state (enables, 
etc.). 

❚  At context switch select the task with the highest priority. 

❚  Linear complexity, O(n) where n = number of tasks. 
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Critical sections 

❚  Access to a shared resource should be mutually 
exclusive to access a resource 
❙  lock the resource → critical section starts 

❘  may fail and block the task 

❙  process the resource 
❙  unlock the resource critical section ends 

C1 C2 Task 
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Rate Monotonic Scheduling — Problems 

❚  Static cyclic scheduling is better if possible. 
❚  Critical sections in tasks and communication create 

problems 
❙  Deadlock 
❙  Priority inversion 

❚  Methods for solving priority inversion problem 
❙  priority inheritance, 
❙  priority ceiling protocol. 
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Deadlock 
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Priority Inversion 
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Priority Inheritance 

❚  When a job Ji tries to enter a critical section and it is already locked 
by a lower priority task Jk then Ji waits and Jk inherits the priority of Ji 

❚  The queue of jobs waiting for a resource is ordered by decreasing 
priority 

❚  Priority inheritance is transitive. 
❚  At any time, the priority at which a critical section is executed is 

always equal to the highest priority of the jobs that are currently 
blocked on it. 

❚  When a job exits critical section it usually resumes the priority it had 
when it entered critical section. 

❚  When released, a resource is granted to the highest priority job, if any 
waiting for it. 
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Priority Inheritance Protocol 
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Priority Inversion — problems 

❚  Chained blocking:  
❙  a job can have several critical sections, 
❙  it can be blocked whenever it wants to enter a critical 

section 
❙  this generates overhead in terms of task switching. 

❚  The main idea is to reduce the occurrence of priority 
inversions by preventing multiple priority inversions; a 
job will be blocked at most once before it enters its first 
critical section. 

❚  The solution prevents deadlock. 

2014-08-26 53 

Priority ceiling protocol 

❚  Assumptions 
❙  a task cannot voluntarily suspend itself, 
❙  semaphores cannot be held between invocations, 
❙  semaphores must be locked in a nested manner. 

❚  Protocol 
❙  Every CS has a ceiling: priority of a highest task that may 

enter it, 
❙  A task is allowed into a CS only if its priority is higher than 

ceilings of all active CS’s, 
❙  If task A is blocking some higher priority task B, then A gets 

the priority of B while in CS. 
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Dynamic Scheduling — Dynamic Priorities 

❚  Dynamic priorities needed since sometime static 
priorities might not meet deadlines 

❚  An Example 

  C1=2, T1=5 

  C2=4, T2=7 

Task1 
Task2 

2 5 7 
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Earliest Deadline First 

❚  Minimizes number of missed deadlines. 
❚  Tasks with earliest deadline has priority. 

❚  An Example 

❚  Any sequence is optimal that puts the jobs in order of 
non-decreasing deadlines 

Task2 
Task1 

2 5 7 14 10 

C1=2, T1=5 
C2=4, T2=7 
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Earliest Deadline First 

❚  EDF can achieve 100% utilization until overload occurs. 
❚  Cannot guarantee meeting deadlines for arbitrary data 

arrival times. 
❚  An example 

Task Period (T) Rate (1/T) Exec Time (C) Utilization (U)

A 20 ms 50 Hz 10 ms 0.5

B 50 ms 20 Hz 25 ms 0.5

A1 A2 

0 10 20 30 40 50 60 70 80 90 100 

A1 B1 A2 A3 A4 A5,B2 

B1 A3 B1 B2 A4 B2 A1 
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Earliest Deadline First 

❚  Additional assumptions 
❙  arbitrary release times and deadlines, and 
❙  arbitrary and unknown (to the scheduler) execution 

times. 

❚  The EDF algorithm is optimal in that if there exist any 
algorithm that can build a valid (feasible) schedule on a 
single processor, then the EDF algorithm also builds a 
valid (feasible) schedule. 
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Earliest Deadline First Implementation 

❚  At each preemption, sort tasks by time-to-deadline. 
❚  Need for efficient sorting algorithm — O(n logn) 

❚  Choose ready task closest to the deadline. 
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What Is Missing 

❚  Data dependencies between tasks 
❚  Context switching time (jitter) 

❚  Multiprocessor scheduling 

❚  Memory considerations 

❚  ... 
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Data dependencies 

❚  Data dependencies allow us to 
improve utilization. 
❙  Restrict combination of processes 

that can run simultaneously. 
❚  P1 and P2 can’t run simultaneously. 

P1 

P2 
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Context-switching time 

❚  Non-zero context switch time can push limits of a tight 
schedule. 

❚  Hard to calculate effects -- depends on order of context 
switches. 

❚  In practice, OS context switch overhead is small. 
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