
1

2012-04-18 1

System Partitioning

Kris Kuchcinski

Krzysztof.Kuchcinski@cs.lth.se

2012-04-18 2

Partitioning

“He who can properly define and divide is to be
considered a god.”

Plato (ca 429-347 BC)

2012-04-18 3

System Partitioning

  The functionality of a system is implemented with a set
of interconnected system components, such as ASIC’s,
memories, CPU’s, buses.

  The designer must solve two problems:
  select a set of system components (allocation),
  partition the system’s functionality among these

components (partitioning).

  The final implementation has to satisfy a set of design
constraints, such as cost, performance and power
consumption.

2012-04-18 4

Structural Partitioning

  First the system components are implemented using
interconnected hardware components.

  Partitioning separates the objects into groups, where
each group represents a system component.

  Mostly used at lower levels of abstraction for hardware
partitioning."

  Satisfies certain constraints (for instance packaging)."

  Problems:"
  size/performance trade-offs are difficult,"
  large number of objects.

2012-04-18 5

Functional Partitioning

  The system level functionality is partitioned in order to
divide the behaviour of the system between multiple
components."

  Usually executable model is partitioned and therefore
the estimation of parameters and partitioning results is
possible."

  Advantages:
  size/performance trade-offs,
  small number of objects,
  hardware/software solutions.

2012-04-18 6

Partitioning Granularity"

  Coarse granularity"
  deals with processes, subprograms, blocks of

statements,"
  typical for system-level synthesis,"
  deals with a relatively small number of objects."

  Fine granularity"
  performed at operation level,"
  used during high-level synthesis,"
  high complexity.

2

2012-04-18 7

Abstract Representation"

  Structure."

  Register transfer."

  FSM with datapath."

  Control/data-flow graph (CDFG)"
  appropriate for operation level partitioning (HLS)."

  Task"
  appropriate for system level partitioning."

2012-04-18 8

Task Partitioning
• • •
signal S1, S2, S3, S4, S5, S6: INTEGER;
• • •
P1: process

 variable A, B: INTEGER;
begin

 • • •
 A:=(S1+5)*3;
 B:=S1+S2+7;
 S3<=A*B;
 • • •

end process;

P2: process

 variable X, Y: INTEGER;
begin

 • • •
 wait on S3;
 S4<=S3+X;
 • • •
 wait on S5;
 S6<=S5*Y;

end process;

P3: process

 variable Z: INTEGER;
begin

 wait on S4;
 • • •
 S5<=S4+Z;

end process;	

S1 S1

S3

S4

S5

P1

P2 P3

S6

2012-04-18 9

CDFG Partitioning

5 S1 S2

S3

3 7

CDFG for process P1

+ +

+ *

*

x := S1 + 5;
y := S1 + S2;
t :=x * 3;
z := y + 7;
S2 <= t * z;

2012-04-18 10

System Partitioning

  Purpose — to assign certain objects to clusters, so that
a given objective function is optimized and design
constraints are fulfilled."

  Given a set of n objects V={v1, v2, ..., vn}, a k-way
partitioning Pk={C1, C2, ..., Ck} consists of k clusters, C1,
C2, ..., Ck so that C1∪C2∪ ... ∪Ck=V, and Ci∩Cj=∅ for all
i,j, i≠j.

  The partitioning problem — find a partitioning Pk of a set
V of n objects, so that the cost determined by an
objective function ObjFunc(Pk) is minimal and a set of
constraints Cnstr(Pk), is satisfied."

2012-04-18 11

Metrics and Estimations

  Partitioning algorithms have to rely on a quantitative
measure of a candidate solution’s goodness."

  Metrics — attributes which characterise a given solution;
they are expressed quantitatively.

  Metrics include cost, execution time, communication
rates, power consumption, testability, reliability, program
size, data size and memory size.

  Estimation determines a metric value from a rough
implementation.

  Inaccuracy can be tolerated as long as the relative
goodness of any two partitions is determined correctly.

2012-04-18 12

Objective Function and Closeness function

  Objective function: a combination of metrics which
captures the overall quality of a certain partitioning."

  Closeness function: captures the benefit gained from
grouping two objects into the same partition;
it is based on a local view of the system.

3

2012-04-18 13

Partitioning Objective

  Partitioning quality is measured using an objective
function (cost function)."

  Objective function is a combination of metrics which
captures the overall quality of a certain partitioning."

  An example
∑ ×=
i

ii MwObjFunc

powerkdelaykareakObjFunc ⋅+⋅+⋅= 321

2012-04-18 14

Objective Function Example

Objective function for hardware/software partitioning in "
VULCAN:"
	

	

	

SH: "implementation cost of the hardware partition"
SS: "implementation cost of the software partition"
B: "bus utilisation"
P: "processor utilisation"
m: "total size of variables transferred across hardware/

software boundary"

mwPwBwSwSwObjFun SH ⋅+⋅−⋅+⋅−⋅= 54321

2012-04-18 15

Design Constraints

  Considered separately by the partitioning algorithm,"
  need to check them during partitioning decisions,"
  rejection of infeasible solutions."

  Included into the cost function"
  can give an additional penalty to the objective

function,"
  focus on a partitioning which satisfies constraints

(ObjFunc=0)"
"

ObjFunc = k1*F(area, area_constr) + k2*F(delay,delay_constr) + k3*F(power,power_constr)

2012-04-18 16

Objective Function Example

  System level partitioning
()
()

2

1
_100∑ ""

#

$
%%
&

'
⋅⋅=

i i

i

Clmax_area
ClareaviolatewObjFunc

2

2)(
)(_100∑ ""
#

$
%%
&

'
⋅⋅+

i i

i

Clmax_pins
Clpinsviolate

w

2

3
_100∑ ""

#

$
%%
&

'
⋅⋅+

i smax_nrchip
nrchipsviolate

w

2

2)(
)(_100∑ ""
#

$
%%
&

'
⋅⋅+

i i

i

bmemax_execti
bexectimeviolate

w

!
"
>−−

=
otherwise

Clmax_areaClareaifClmax_areaClarea
Clareaviolate iiii

i 0
0)()()()(

)(_

2012-04-18 17

Closeness Function

  Captures the benefit gained from grouping two objects
into the same partition."

  It is based on a local view of the system."

  Closeness between two functions fi and fj:

()),(
)(cos

)(cos)(cos)(cos
, 21 ji

ji

jiji
ji ffpartw

fft
fftftft

wffClose ⋅−
∪

∪−+
⋅=

!
"
#

=
otherwise

parallelinexecutedbecanfandfif
ffpart ji
ji 0

1
),(

2012-04-18 18

Partitioning Approaches

  Manually guided partitioning"
  Needs strong support from design environment:

  estimation tools & schedulers,

  facilities to interactively perform predefined transformations and to define
new ones,

  graphical interfaces.

  Automatic partitioning

4

2012-04-18 19

Automatic Partitioning

  The partitioning problem is NP-complete."

  The design space has to be explored according to a
certain strategy which converges towards a solution
close to one which yields the minimal cost."

2012-04-18 20

Automatic Partitioning Approaches

  Constructive (clustering)"
  bottom up approach: each object initially belongs to

its own cluster, and clusters are then gradually
merged until the desired partitioning is found;"

  does not require a global view of the system but
relies only on local relations between objects
(closeness metrics)."

2012-04-18 21

Automatic Partitioning Approaches (cont’d)

  Iterative (transformation-based)"
  based on a design space exploration which is guided

by an objective function that reflects the global quality
of the partitioning; a starting solution is modified
iteratively, by passing from one candidate solution to
another based on evaluations of an objective
function."

2012-04-18 22

Hierarchical clustering"

  A constructive approach: performed in several iterations
with final goal to group a set of objects into partitions
according to some measure of closeness."

  At each iteration the two closest objects are grouped
together; the process is iterated until a single cluster is
produced."

2012-04-18 23

Hierarchical cluster tree"

  The cluster tree contains"
  leafs: original objects"
  internal nodes: clustered objects"
  height: associated to each non-terminal node; reflects the distance between

the two objects that have been merged into the corresponding cluster."

  A certain partitioning is selected by cutting the cluster
tree with a “cut line”; each sub-tree below the cut line
becomes one resulting partition."

  The closeness function is defined between the initial
objects; at successive iterations, closeness between
different groups of objects have to be estimated based
on the closeness between individual objects."

2012-04-18 24

Hierarchical Clustering - An Example

v1 v2

v3
v4

v5

0
3

3 4

6
5

v1
v2

v3

v4
v5

4

v1 v2
v3

v4 v5 4

5 3

v1
v2

v3

v4
v5

v1 v2

v3
v4

v5

0
2

3 4

7 3
6

5

1 2

v1 v5 v3 v2 v4

5

2012-04-18 25

Transformation Based Partitioning"

  Transformation based approaches perform different
variants of neighbourhood search."

  Neighbourhood N(x) of a solution x is a set of solutions
that can be reached from x by a simple operation
(move)."

  Greedy partitioning algorithms have tendency to be
trapped in local minima."

  There exist algorithms which help to escape from local
minima (Kernighan-Lin, Simulated Annealing, Tabu
Search, Genetic Algorithms, etc.)."

2012-04-18 26

Kernighan-Lin Algorithm

v2

v3

v4

v1

v5

v7
v6

v8

200
10

10

1000 1000

100
200

10

EeCvCvthatsojiforcObjFunc ijjiij ∈∈∈=∑ ,,,, 21

EeandvthanclusterdifferentatobelongsvwherecExt ijij
v

iji
j

∈=∑ ,,

EeandvasclustersamethetobelongsvwherecInt ijij
v

iji
j

∈=∑ ,,

iii IntExtDCCObjFuncCCObjFunc −==−),(),('
2

'
121

c56=200
c67=10
:

Moving vi:

2012-04-18 27

Kernighan-Lin Algorithm (cont’d)

v2

v3

v4

v1

v5

v7
v6

v8

200
10

10

1000 1000

100
200

10

v2
v3

v4

v1

v5

v7
v6

v8

200
10

10

1000 1000

100 200
10

iii IntExtDCCObjFuncCCObjFunc −==−),(),('
2

'
121

D3 = 100 - 1010 = -910

jijiij vandvbetweensconnectionnoisthereifDDG ,+=

jiijjiij vandvconnectingedgeanisthereifcDDG ,2 ⋅−+=

Swap of two nodes vi and vj

2012-04-18 28

Kernighan-Lin Algorithm (cont’d)

Construct initial configuration xnow := (C1, C2), with |C1| = |C2| = n
 repeat
 S0 := 0
 Unlock all nodes
 for k := 1 to n do
 Find the pair (vi∈C1, vj∈C2) so that vi and vj are unlocked and Gij is maximal
 Sk := Sk-1+Gij
 tentativek := (vi, vj)
 Lock vi and vj
 Update D values for each node considering as if vi and vj are swapped
 end for
 Find p so that Sp is maximum of all partial sums S
 if Sp > 0 then
 Generate new solution xnow starting from current solution xnow, by
 performing all the interchanges tentativel, 1≤l≤p
 end if
 until maximal gain Sp ≤ 0
return xnow

2012-04-18 29

Kernighan-Lin Algorithm (cont’d)

v2

v3

v4

v1

v5

v7
v6

v8

200
10

10

1000 1000

100
200

10

v2

v3

v4

v1

v5 v7
v6

v8

10 10

1000 1000
100 200 10

200

v1↔v5

v2

v3

v4

v1 v5 v7

v6 v8

10
10

1000

1000
100

200
10

200
v2↔v6

2012-04-18 30

Objective Function in KL Algorithm

140000

145000

150000

155000

160000

165000

170000

0 5 10 15 20 25 30 35 40 45

C
os
t f
un
ct
io
n
va
lu
e

Number of iterations

Var ia tion of the cost function dur ing par titioning with KL algor ithm.

6

2012-04-18 31

Neighbourhood Search!

Construct initial configuration xnow:=x0
Repeat

 Select new, acceptable solution x’ ∈ N(xnow)
 xnow = x’

until stopping criterion met
return solution corresponding to the minimum cost function

  Who is the neighborhood?

  Under which circumstances a new solution is accepted?

  What is the stopping criterion?

2012-04-18 32

Simulated Annealing

Select an initial solution xnow ∈ X, an initial temperature t0 > 0, and a
temperature reduction function α;
repeat

 repeat
 randomly select xnext ∈ N(xnow);
 δ := f(xnext) - f(xnow);
 if δ < 0 then xnow := xnext else
 begin
 generate a random number p uniformly in the range (0, 1);
 if p < exp(-δ/t) then xnow := xnext;
 end
 until iteration_count = nrep;
 t := α(t);

until stopping_condition = true;
return xnow as the solution.

2012-04-18 33

Simulated Annealing (cont’d)

38000

40000

42000

44000

46000

48000

50000

52000

54000

56000

0 20 40 60 80 100 120 140
Number of iterations

C
os
t f
un
ct
io
n
va
lu
e optimum at iteration 76

2012-04-18 34

Hw/Sw Partitioning

  Hardware/software partitioning is very often treated as
a particular two way partitioning in which performance
has to be maximized and hardware size to be
minimized;"

  Assumptions:"
  microprocessor and ASIC working in parallel;"
  reducing the amount of communication between the

microprocessor and the hardware coprocessor
improves the overall performance of the system."

  Objective: Maximal performance at a given cost limit."

2012-04-18 35

Hw/Sw Partitioning (cont’d)

  Partitioning is based on metric values derived from
profiling, static analysis of the specification, and cost
estimation.

  Performance improvement based on assumption that
better performance is obtained if
  computation intensive processes are mapped into

hardware,
  parallelism is improved,
  inter-domain communication is reduced.

2012-04-18 36

Summary

  The partitioning problem is NP-complete and has to be
solved using optimization heuristics."

  Partitioning heuristics are constructive or transformation-
based."

  Hierarchical clustering is one of the most used
constructive approaches."

  Transformational approaches are based on
neighborhood search."

  A hardware software partitioning for acceleration is done
by placing computation intensive processes into
hardware, improving parallelism and reducing inter-
domain communication.

7

2012-04-18 37

Literature

  P. Eles, K. Kuchcinski and Z. Peng, System Synthesis
with VHDL, Kluwer Academic Publisher, 1998.

