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Partitioning 

 
“He who can properly define and divide is to be 
considered a god.” 
 

Plato (ca 429-347 BC) 
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System Partitioning 

  The functionality of a system is implemented with a set 
of interconnected system components, such as ASIC’s, 
memories, CPU’s, buses. 

  The  designer must solve two problems: 
  select a set of system components (allocation), 
  partition the system’s functionality among these 

components (partitioning). 

  The final implementation has to satisfy a set of design 
constraints, such as cost, performance and power 
consumption. 
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Structural Partitioning 

  First the system components are implemented using 
interconnected hardware components. 

  Partitioning separates the objects into groups, where 
each group represents a system component. 

  Mostly used at lower levels of abstraction for hardware 
partitioning."

  Satisfies certain constraints (for instance packaging)."

  Problems:"
  size/performance trade-offs are difficult,"
  large number of objects. 
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Functional Partitioning 

  The system level functionality is partitioned in order to 
divide the behaviour of the system between multiple 
components."

  Usually executable model is partitioned and therefore 
the estimation of parameters and partitioning results is 
possible."

  Advantages: 
  size/performance trade-offs, 
  small number of objects, 
  hardware/software solutions. 
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Partitioning Granularity"

  Coarse granularity"
  deals with processes, subprograms, blocks of 

statements,"
  typical for system-level synthesis,"
  deals with a relatively small number of objects."

  Fine granularity"
  performed at operation level,"
  used during high-level synthesis,"
  high complexity. 
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Abstract Representation"

  Structure."

  Register transfer."

  FSM with datapath."

  Control/data-flow graph (CDFG)"
  appropriate for operation level partitioning (HLS)."

  Task"
  appropriate for system level partitioning."
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Task Partitioning 
• •  • 
signal S1, S2, S3, S4, S5, S6: INTEGER; 
•  •  • 
P1: process 

 variable A, B: INTEGER; 
begin 

 •  •  • 
 A:=(S1+5)*3; 
 B:=S1+S2+7; 
 S3<=A*B; 
 •  •  • 

end process; 
 
P2: process 

 variable X, Y: INTEGER; 
begin 

 •  •  • 
 wait on S3; 
 S4<=S3+X; 
 •  •  • 
 wait on S5; 
 S6<=S5*Y; 

end process; 
 
P3: process 

 variable Z: INTEGER; 
begin 

 wait on S4; 
 •  •  • 
 S5<=S4+Z; 

end process;	
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CDFG Partitioning 

5 S1 S2 

S3 

3 7 

CDFG for process P1 

+ + 

+ * 

* 

x := S1 + 5; 
y := S1 + S2; 
t :=x * 3; 
z := y + 7; 
S2 <= t * z; 
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System Partitioning 

  Purpose — to assign certain objects to clusters, so that 
a given objective function is optimized and design 
constraints are fulfilled."

  Given a set of n objects V={v1, v2, ..., vn}, a k-way 
partitioning Pk={C1, C2, ..., Ck} consists of k clusters, C1, 
C2, ..., Ck so that C1∪C2∪ ... ∪Ck=V, and Ci∩Cj=∅ for all 
i,j, i≠j. 

  The partitioning problem — find a partitioning Pk of a set 
V of n objects, so that the cost determined by an 
objective function ObjFunc(Pk) is minimal and a set of 
constraints Cnstr(Pk), is satisfied."
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Metrics and Estimations 

  Partitioning algorithms have to rely on a quantitative 
measure of a candidate solution’s goodness."

  Metrics — attributes which characterise a given solution; 
they are expressed quantitatively. 

  Metrics include cost, execution time, communication 
rates, power consumption, testability, reliability, program 
size, data size and memory size. 

  Estimation determines a metric value from a rough 
implementation. 

  Inaccuracy can be tolerated as long as the relative 
goodness of any two partitions is determined correctly. 
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Objective Function and Closeness function 

  Objective function: a combination of metrics which 
captures the overall quality of a certain partitioning."

  Closeness function: captures the benefit gained from 
grouping two objects into the same partition;                   
it is based on a local view of the system. 
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Partitioning Objective 

  Partitioning quality is measured using an objective 
function (cost function)."

  Objective function is a combination of metrics which 
captures the overall quality of a certain partitioning."

 

  An example 
∑ ×=
i

ii MwObjFunc

powerkdelaykareakObjFunc ⋅+⋅+⋅= 321
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Objective Function Example 

Objective function for hardware/software partitioning in "
VULCAN:"
	


	


	


SH: "implementation cost of the hardware partition"
SS: "implementation cost of the software partition"
B: "bus utilisation"
P: "processor utilisation"
m: "total size of variables transferred across hardware/

software boundary"

mwPwBwSwSwObjFun SH ⋅+⋅−⋅+⋅−⋅= 54321
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Design Constraints 

  Considered separately by the partitioning algorithm,"
  need to check them during partitioning decisions,"
  rejection of infeasible solutions."

  Included into the cost function"
  can give an additional penalty to the objective 

function,"
  focus on a partitioning which satisfies constraints 

(ObjFunc=0)"
"

ObjFunc = k1*F(area, area_constr) +  k2*F(delay,delay_constr) + k3*F(power,power_constr) 
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Objective Function Example 

  System level partitioning 
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Closeness Function  

  Captures the benefit gained from grouping two objects 
into the same partition."

  It is based on a local view of the system."

  Closeness between two functions fi and fj: 
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Partitioning Approaches 

  Manually guided partitioning"
  Needs strong support from design environment: 

  estimation tools & schedulers, 

  facilities to interactively perform predefined transformations and to define 
new ones, 

  graphical interfaces. 

  Automatic partitioning 
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Automatic Partitioning 

  The partitioning problem is NP-complete."

  The design space has to be explored according to a 
certain strategy which converges towards a solution 
close to one which yields the minimal cost."
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Automatic Partitioning Approaches 

  Constructive (clustering)"
  bottom up approach: each object initially belongs to 

its own cluster, and clusters are then gradually 
merged until the desired partitioning is found;"

  does not require a global view of the system but 
relies only on local relations between objects 
(closeness metrics)."

2012-04-18 21 

Automatic Partitioning Approaches (cont’d) 

  Iterative (transformation-based)"
  based on a design space exploration which is guided 

by an objective function that reflects the global quality 
of the partitioning; a starting solution is modified 
iteratively, by passing from one candidate solution to 
another based on evaluations of an objective 
function."
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Hierarchical clustering"

  A constructive approach: performed in several iterations 
with final goal to group a set of objects into partitions 
according to some measure of closeness."

  At each iteration the two closest objects are grouped 
together; the process is iterated until a single cluster is 
produced."
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Hierarchical cluster tree"

  The cluster tree contains"
  leafs: original objects"
  internal nodes: clustered objects"
  height: associated to each non-terminal node; reflects the distance between 

the two objects that have been merged into the corresponding cluster."

  A certain partitioning is selected by cutting the cluster 
tree with a “cut line”; each sub-tree below the cut line 
becomes one resulting partition."

  The closeness function is defined between the initial 
objects; at successive iterations, closeness between 
different groups of objects have to be estimated based 
on the closeness between individual objects."
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Hierarchical Clustering - An Example 
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Transformation Based Partitioning"

  Transformation based approaches perform different 
variants of neighbourhood search."

  Neighbourhood N(x) of a solution x is a set of solutions 
that can be reached from x by a simple operation 
(move)."

  Greedy partitioning algorithms have tendency to be 
trapped in local minima."

  There exist algorithms which help to escape from local 
minima (Kernighan-Lin, Simulated Annealing, Tabu 
Search, Genetic Algorithms, etc.)."
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Kernighan-Lin Algorithm 
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Kernighan-Lin Algorithm (cont’d) 
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Kernighan-Lin Algorithm (cont’d) 

Construct initial configuration xnow := (C1, C2), with |C1| = |C2| = n 
   repeat 
      S0 := 0 
      Unlock all nodes 
      for k := 1 to n do 
          Find the pair (vi∈C1, vj∈C2) so that vi and vj are unlocked and Gij is maximal 
          Sk := Sk-1+Gij 
              tentativek := (vi, vj) 
          Lock vi and vj 
              Update D values for each node considering as if vi and vj are swapped 
      end for 
      Find p so that Sp is maximum of all partial sums S 
      if Sp > 0 then 
         Generate new solution xnow starting from current solution xnow, by  
          performing all the interchanges tentativel, 1≤l≤p 
      end if 
   until maximal gain Sp ≤  0 
return xnow 
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Kernighan-Lin Algorithm (cont’d) 
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Objective Function in KL Algorithm 
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Neighbourhood Search!

Construct initial configuration xnow:=x0 
Repeat 

 Select new, acceptable solution  x’ ∈ N(xnow) 
 xnow = x’ 

until stopping criterion met 
return solution corresponding to the minimum cost function 
 
  Who is the neighborhood? 

  Under which circumstances a new solution  is accepted? 

  What is the stopping criterion? 
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Simulated Annealing 

Select an initial solution xnow ∈ X, an initial temperature t0 > 0, and a  
temperature reduction function α; 
repeat 

 repeat 
  randomly select xnext ∈ N(xnow); 
  δ := f(xnext) - f(xnow); 
  if δ < 0 then xnow := xnext else 
  begin  
      generate a random number p uniformly in the range (0, 1); 
       if p < exp(-δ/t) then xnow := xnext; 
  end 
 until iteration_count = nrep; 
 t := α(t); 

until stopping_condition = true; 
return xnow as the solution. 
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Simulated Annealing (cont’d) 
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Hw/Sw Partitioning 

  Hardware/software partitioning is very often treated as 
a particular two way partitioning in which performance 
has to be maximized and hardware size to be 
minimized;"

  Assumptions:"
  microprocessor and ASIC working in parallel;"
  reducing the amount of communication between the 

microprocessor and the hardware coprocessor 
improves the overall performance of the system."

  Objective: Maximal performance at a given cost limit."
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Hw/Sw Partitioning (cont’d) 

  Partitioning is based on metric values derived from 
profiling, static analysis of the specification, and cost 
estimation. 

  Performance improvement based on assumption that 
better performance is obtained if 
  computation intensive processes are mapped into 

hardware, 
  parallelism is improved, 
  inter-domain communication is reduced. 
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Summary 

  The partitioning problem is NP-complete and has to be 
solved using optimization heuristics."

  Partitioning heuristics are constructive or transformation-
based."

  Hierarchical clustering is one of the most used 
constructive approaches."

  Transformational approaches are based on 
neighborhood search."

  A hardware software partitioning for acceleration is done 
by placing computation intensive processes into 
hardware, improving parallelism and reducing inter-
domain communication. 
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