Design representations

Control/Data-Flow Models

Kris Kuchcinski
Krzysztof.Kuchcinski@cs.lth.se

Elevator Example Revisited

- FSM grows with the number of floors.
- No possibility to specify computations.
- ...

FSMD Example

- simple extension to add data computations to FSM

\[
\text{S}_1 \quad \text{S}_2 \quad \text{S}_3 \quad \text{S}_4 \quad \text{S}_5 \quad \text{S}_6
\]
\[
\text{C}_1 \quad \text{¬C}_1
\]

Control/Data-Flow Graphs

If \(\text{diff} > 0 \) then
\[
y := y + 1;
\text{diff} := \text{diff} - \text{end}_x;
\]
else
\[
x := x + 1;
\text{diff} := \text{diff} + \text{end}_y;
\end{if}

Problems with CDFG

- Represents explicitly control structures of the program.
- No good semantics which can be used to build new control structures (message send/receive, wait, etc.).
- Each new construct need to be defined to be able to use it in the representation.

Extended Timed Petri Nets (ETPN)

Design Representation

References:
ETPN Example

PROGRAM ETPN;
 VAR
 Acc, B, C, Max, N: integer;
 Ip1, Ip2, Ip3, Op1, Op2: port of integer;
 BEGIN
 COBEGIN
 Read(Ip1, N);
 Acc := 0;
 Max := 0;
 COEND;
 REPEAT
 COBEGIN
 N := N - 1;
 BEGIN
 COBEGIN
 Read(Ip2, B);
 Read(Ip3, C);
 COEND;
 Acc := Acc + B * C;
 IF B > Max THEN Max := B;
 COEND;
 END
 UNTIL N <= 0;
 COBEGIN
 Write(Op1, Max);
 Write(Op2, Acc);
 COEND;
 END.

Hierarchical Conditional Dependency Graphs

The jian be n ch mark a n d its HCD G.