
1

2012-03-30 1

Design representations

Control Oriented Models

Kris Kuchcinski

Krzysztof.Kuchcinski@cs.lth.se

2012-03-30 2

Models

“A theory has only the alternative of being right or
wrong. A model has a third possibility: it may be right,
but irrelevant.”

Manfred Eigen (1927 -)
Jagdish Mehra (ed.) The Physicist's Conception
of Nature, 1973.

2012-03-30 3

Control Flow Models

  FSM (Mealy and Moore)
  FSM extensions
  Codesign FSM
  Communicating FSM

  Petri nets

  StateCharts

  Discrete Event

  CCS, CSP, …

  ...

2

2012-03-30 4

Application Areas

  Reactive systems
  Control functions

  Protocols (telecom, computers, ...)

  ...

2012-03-30 5

FSM basics

  Different communication mechanisms:
  synchronous (classical FSM’s, Moore, Mealy)
  asynchronous (CCS, Milner ‘80; CSP, Hoare ‘85)

  Mealy and Moore state machines FSM = <S, I, O, δ, λ>
S is set of states
I is set of inputs (conditions)
δ is a next-state function, δ: S x I → S
λ is an output function, λ: S x I → O for Mealy machine

 λ: S → O for Moore machine

2012-03-30 6

FSM Model for Elevator Controller
Mealy Machine

S1 S2

S3

r1/n
r2/u1

r1/d1

r2/n

r3/n

r1/d2
r3/u2 r2

/d
1

r3
/u

1

start

3

2012-03-30 7

FSM Model for Elevator Controller
Moore Machine

S12/d1

S13/n

S11/d2 S21/d1

S22/n

S23/u1

S31/n

S32/u1

S33/u2

r1 r1
r1

r3
r3
r3

r1
r1

r1
r1

r1

r1

r2
r2

r2

r2

r2
r2

r2 r3

r3

r3

r3

r2

2012-03-30 8

Moore vs. Mealy machines

  Theoretically, same computational power (almost)
  In practice, different characteristics

  Moore machines:
  non-reactive (response delayed by 1 cycle)
  easy to compose (always well-defined)

  Mealy machines:
  reactive (0 response time)
  hard to compose (problem with combinational cycles)

2012-03-30 9

Problems with FSM’s

  How to reduce the size of the representation?
  Solution — hierarchical concurrent finite state machines

  Example — Harel’s StateCharts

  3 orthogonal exponential reductions
  hierarchy,
  concurrency,
  non-determinism.

4

2012-03-30 10

Petri Nets

  Model introduced by C.A. Petri in 1962
 Ph.D. Thesis: “Communication with Automata”

  Applications: distributed computing, manufacturing,
control, communication networks, transportation…

  Petri nets describe explicitly and graphically:
  sequencing/causality,
  conflict/non-deterministic choice,
  concurrency.

  Asynchronous model (partial ordering)

  Main drawback: no hierarchy

2012-03-30 11

Petri Net example

p1

p2

p3

t1

t2

t3

2012-03-30 12

Definition

  A Petri net structure, C, is a four tuple

 C = (P, T, I, O)
P = {p1, p2, ..., pn} is a finite set of places, n ≥ 0;

T = {t1, t2, ..., tm} is a finite set of transitions, m ≥ 0;

P ∩ T = ∅;	

I: T → P∞ is the input function, a mapping from transitions
to bags of places;

0: T → P∞ is the output function, a mapping from
transitions to bags of places;

5

2012-03-30 13

Petri Net Marking

  A marking m of a Petri net C = (P, T, I, O) is a function
from the set of places P to the non-negative integer

 µ : P → N

  A marking represents an assignment of tokens to the
places.

  A marking m can also be defined as an n-vector,
µ = (µ1, µ2, ..., µn), where n= |P| and µi ∈ N, i = 1, 2, ...,
n. The number of tokens in the place pi is denoted by µi.

  A marked Petri net M = (C, µ) is a Petri net structure C =
(P, T, I, O) and a marking µ.

2012-03-30 14

Summary

  A (C,µ0) is a Petri Net Graph N
  places: represent distributed state by holding tokens
  marking (state) µ is an n-vector (µ1,µ2,µ3…), where µi

is the non-negative number of tokens in place pi.
  initial marking (µ0) is initial state

  transitions: represent actions/events
  enabled transition: enough tokens in predecessors
  firing transition: modifies marking

  …and an initial marking µ0.

  Place/Transition <=> conditions/events

2012-03-30 15

Firing Rules

  The execution of a Petri net is carried out by firing transitions, which
moves tokens from places to places.

  A transition tj ∈ T in a marked Petri net C = (P, T, I, O) with marking
m is enabled if for all pi ∈ I(tj)

 µ(pi) ≥ #(pi, I(tj))

  A transition tj in a marked Petri net with marking µ may fire
whenever it is enabled.
Firing an enabled transition tj results in a new marking µ’ defined by

 µ’(pi) = µ(pi) - #(pi, I(tj)) + #(pi, O(tj))

 #(pi, I(tj)) (#(pi, O(tj))) – number of occurrences of pi in I(tj) (O(tj))

6

2012-03-30 16

An Example

2012-03-30 17

Sequencing

t1 t2

2012-03-30 18

Concurrency

t1 t2

t3

7

2012-03-30 19

Conflict

The firing order is not irrelevant.

2012-03-30 20

Communication Protocol

Send msg Receive msg

Send ack
Receive ack

2012-03-30 21

Produces/Consumer

producer

consumer 1

buffer

consumer 2

8

2012-03-30 22

Properties of Petri Nets

  Most important analysis problems for Petri nets:
  reachability and coverability

  liveness

  boundness

  safeness

  conservation

2012-03-30 23

Reachability

  Marking µ is reachable from marking µ0 if there exists a
sequence of firings s = µ0 t1 µ1 t2 µ2… µ that transforms
µ0 to µ.

  The reachability problem is decidable.

2012-03-30 24

Liveness

  Liveness: from any marking any transition can become
fireable

  Liveness implies deadlock freedom, not viceversa

9

2012-03-30 25

Boundness

  Boundedness: the number of tokens in any place cannot
grow indefinitely
  (1-bounded also called safe)

  Application: places represent buffers and registers
(check there is no overflow)

2012-03-30 26

Conservation

  Conservation: the total number of tokens in the net is
constant

2012-03-30 27

Analysis Techniques

  State Space Analysis techniques
  Reachability Tree or Coverability Graph

  Structural analysis techniques
  Incidence matrix
  T- and S- Invariants

10

2012-03-30 28

The Reachanility Tree

p1

p2

p3 t2

t1
t3

(1,0,0)

(1,1,0) (0,1,1)

(1,2,0) (0,2,1) (0,0,1)

(1,3,0) (0,3,1) (0,1,1)

t1 t2

t3 t1

t1

t2

t2 t3

2012-03-30 29

Infinite Tree

p1

p2

t2 t1

(1,0)

(0,1)

(1,0)

(0,1)

(0,1)

t1

t2

t1

t2

2012-03-30 30

Reachability Tree

  We will try to limit the tree to the finite size (notice,
however, that it will usually result in the lost of
information)

  We introduce three types of nodes
  frontier

  terminal

  duplicate

11

2012-03-30 31

An extended marking

  Let us assume that after sequence of transitions σ we
will end up in marking µ’ from µ

	

and µ’ > µ
	

 µ’ = µ + (µ’-µ) and (µ’ - µ) > 0

since transition firing can be repeated it can lead to µ’’
 µ’’ = µ’ + (µ’-µ)
 or µ’’ = µ’ + 2(µ’-µ)
 after n times we can produce a marking
 µ’ + n(µ’-µ)
 which, in fact, produces infinite marking.

2012-03-30 32

Infinite Marking

  infinite number of markings is represented by ω symbol
with following properties:
  ω + a = ω	

  ω - a = ω	

  α < ω	

  ω ≤ ω

2012-03-30 33

Finite Reachability Tree

p1

p2

p3 t2

t1
t3

(1,0,0)

(1,ω,0) (0,1,1)

(1,ω,0) (0,ω,1) (0,0,1)

(0,ω,1)

t1 t2

t3 t1 t2

t3

12

2012-03-30 34

Analysis Techniques Based
on Reachabilty Tree

  it can be used for analysing several properties such as
  safeness and boundness
  conservation
  coverability

  it cannot be used, in general, to solve problems such as
  reachability
  liveness
  determine which firing sequences are possible

  limitations => loss information by the use of ω symbol

2012-03-30 35

Matrix Equations

  An alternative definition of Petri nets
  instead of defining (P, T, I, O), we define

(P, T, D-, D+), where two matrices D- and D+represent
input and output function

  we define
 D-[i, j] = #(pi, I(tj))
 D+[i, j] = #(pi, O(tj))

  the transition tj is represented by the unit
m-vector e[j]

2012-03-30 36

Matrix Equations (cont’d)

  transition tj is enabled in a marking µ if
 µ ≥ e[j]⋅D-

  the result of firing transition tj in marking µ, if it is
enabled, is

 δ(µ, tj) = µ - e[j]⋅D- + e[j]⋅D+
 = µ + e[j]⋅(- D- + D+)
 = µ + e[j]⋅D
 where D = D+ - D-

13

2012-03-30 37

Matrix Equations - Example

t1

t2

t3
p1

p2

p3

p4

!
!
!

"

#

$
$
$

%

&

=−

0
1
0

1
0
1

0
0
1

0
0
1

D

!
!
!

"

#

$
$
$

%

&

=+

1
0
0

0
1
0

0
2
0

0
0
1

D

!
!
!

"

#

$
$
$

%

&

−

−

−−

=

1
1
0

1
1
1

0
2
1

0
0
0

D

2012-03-30 38

Examples

[] [] [] [] []100111000101
1
1
0

1
1
1

0
2
1

0
0
0

1000101' =−+=

"
"
"

#

$

%
%
%

&

'

−

−

−−

×+=µ

  firing t3

  firing t3 t2 t3 t2 t1

[] [] [] [] []003101300101
1
1
0

1
1
1

0
2
1

0
0
0

2210101' =−+=

"
"
"

#

$

%
%
%

&

'

−

−

−−

×+=µ

2012-03-30 39

Examples (cont’d)

  To determine if the marking (1, 8, 0, 1) is reachable
from the marking (1, 0, 1, 0), we have the equation

[] []
!
!
!

"

#

$
$
$

%

&

−

−

−−

×+=

1
1
0

1
1
1

0
2
1

0
0
0

01011081 x

[]
!
!
!

"

#

$
$
$

%

&

−

−

−−

×=−

1
1
0

1
1
1

0
2
1

0
0
0

1180 x

  which has a solution x = (0, 4, 5) and sequence the
s = t3t2t3t2t3t2t3t2t3.

14

2012-03-30 40

Matrix Equations - Problems

  matrix D by itself does not properly reflect the structure
of the Petri net - self loops disappear.

  lack of sequencing information in the firing vector.

  a solution of equation µ’ = µ + x ⋅ D is necessary for
reachability but it is not sufficient

2012-03-30 41

Summary of Petri Nets

  Graphical formalism
  Distributed state (including buffering)

  Concurrency, sequencing and choice made explicit

  Structural and behavioral properties

  Analysis techniques available

2012-03-30 42

Petri Nets Extensions

  Add interpretation to tokens and transitions
  Colored nets (tokens have value)

  Add time
  time/timed Petri Nets (deterministic delay)

  type (duration, delay)
  where (place, transition)
  control (weak, strong)

  Stochastic PNs (probabilistic delay)
  Generalized Stochastic PNs (timed and immediate

transitions)

  Add hierarchy
  Place Chart Nets

15

2012-03-30 43

Time Petri Nets (TPN’s)

ti (a, b)

  a (0 ≤ a), is the minimal time that
must elapse, starting from the time
at which transition ti is enabled, until
this transition can fire,

  b (0 ≤ b ≤ ∞), denotes the maximal
time during which transition ti can
be enabled without being fired.

Reference: B. Berthomieu and M. Diaz, Modeling and Verification of Time Dependent Systems
Using Time Petri Nets, IEEE Trans. on Software Engineering, vol. 17, no. 3, March 1991.

2012-03-30 44

TPN example

P1

t1 (1, 6)

P3

P5

t3(2, 3)

P6

t4(1, 4)

P4P2

t2 (1, 6)

(1, 4)
t5P7

2012-03-30 45

Some Properties of TPN’s

  The reachability and boundness problems for TPN’s are
undecidable.

  There exist subclasses of TPN’s which are bound.

16

2012-03-30 46

Literature

  Tadao Murata, “Petri Nets: Properties, Analysis and
Applications”, Proceedings of IEEE, vol. 77, no. 4, April
1989.

  Bernard Berthomieu and Michel Diaz, “Modeling and
Verification of Time Dependent Systems Using Time
Petri Nets”, IEEE Trans. on Software Engineering, vol.
17, no. 3, March 1991.

  D. Harel, et. al., “STATEMATE: A Working Environment
for the Development of Complex Reactive Systems”,
IEEE Trans. on Software Engineering, vol. 16, no. 4,
April 1990.

