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Models 

 
“A theory has only the alternative of being right or 
wrong. A model has a third possibility: it may be right, 
but irrelevant.” 
 
Manfred Eigen (1927 - ) 
Jagdish Mehra (ed.) The Physicist's Conception 
of Nature, 1973. 
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Control Flow Models 
 

  FSM (Mealy and Moore) 
  FSM extensions 
  Codesign FSM 
  Communicating FSM 

  Petri nets 

  StateCharts 

  Discrete Event 

  CCS, CSP, … 

  ... 
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Application Areas 

  Reactive systems 
  Control functions 

  Protocols (telecom, computers, ...) 

  ... 
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FSM basics 
 

  Different communication mechanisms: 
  synchronous (classical FSM’s, Moore, Mealy) 
  asynchronous (CCS, Milner ‘80; CSP, Hoare ‘85) 

  Mealy and Moore state machines FSM = <S, I, O, δ, λ> 
S is set of states 
I is set of inputs (conditions) 
δ is a next-state function, δ: S x I → S 
λ is an output function, λ: S x I  → O for Mealy machine 

             λ: S → O for Moore machine 
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FSM Model for Elevator Controller 
Mealy Machine 
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FSM Model for Elevator Controller 
Moore Machine 
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Moore vs. Mealy machines 
 

  Theoretically, same computational power (almost) 
  In practice, different characteristics 

  Moore machines: 
  non-reactive (response delayed by 1 cycle) 
  easy to compose (always well-defined) 

  Mealy machines: 
  reactive (0 response time) 
  hard to compose (problem with combinational cycles) 
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Problems with FSM’s 
 

  How to reduce the size of the representation? 
  Solution — hierarchical concurrent finite state machines 

  Example — Harel’s StateCharts  

   3 orthogonal exponential reductions 
  hierarchy, 
  concurrency, 
  non-determinism. 
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Petri Nets 
 

  Model introduced by C.A. Petri in 1962 
 Ph.D. Thesis: “Communication with Automata” 

  Applications: distributed computing, manufacturing, 
control, communication networks, transportation… 

  Petri nets describe explicitly and graphically: 
  sequencing/causality, 
  conflict/non-deterministic choice, 
  concurrency. 

  Asynchronous model (partial ordering) 

  Main drawback: no hierarchy 
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Petri Net example 
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Definition 
 

  A Petri net structure, C, is a four tuple 

  C = (P, T, I, O) 
P = {p1, p2, ..., pn} is a finite set of places, n ≥ 0; 

T = {t1, t2, ..., tm} is a finite set of transitions, m ≥ 0; 

P ∩ T = ∅;	



I: T → P∞ is the input function, a mapping from transitions 
to bags of places; 

0: T → P∞ is the output function, a mapping from 
transitions to bags of places; 
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Petri Net Marking 
 

  A marking m of a Petri net C = (P, T, I, O) is a function 
from the set of places P to the non-negative integer 

 µ : P → N 

  A marking represents an assignment of tokens to the 
places. 

  A marking m can also be defined as an n-vector,  
µ = (µ1, µ2, ..., µn), where n= |P| and µi ∈ N, i = 1, 2, ..., 
n. The number of tokens in the place pi is denoted by µi. 

  A marked Petri net M = (C, µ) is a Petri net structure C = 
(P, T, I, O) and a marking µ. 
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Summary 
 

  A (C,µ0) is a Petri Net Graph N 
  places: represent distributed state by holding tokens 
  marking (state) µ is an n-vector (µ1,µ2,µ3…), where µi 

is the non-negative number of tokens in place pi. 
  initial marking (µ0 ) is initial state 

  transitions: represent actions/events 
  enabled transition: enough tokens in predecessors 
  firing transition: modifies marking 

   …and an initial marking µ0.  

  Place/Transition  <=> conditions/events 
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Firing Rules 
 

  The execution of a Petri net is carried out by firing transitions, which 
moves tokens from places to places. 

  A transition tj ∈ T in a marked Petri net C = (P, T, I, O) with marking 
m is enabled if for all pi ∈ I(tj) 

  µ(pi) ≥ #(pi, I(tj)) 

  A transition tj in a marked Petri net with marking µ may fire 
whenever it is enabled. 
Firing an enabled transition tj results in a new marking µ’ defined by 

  µ’(pi) = µ(pi) - #(pi, I(tj)) + #(pi, O(tj)) 

  
 #(pi, I(tj))  (#(pi, O(tj))) – number of occurrences of pi in I(tj) (O(tj)) 
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An Example 
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Sequencing 
 

t1 t2 
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Concurrency 
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Conflict 
 

The firing order is not irrelevant. 
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Communication Protocol 
 

Send msg Receive msg 

Send ack 
Receive ack 
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Produces/Consumer 
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Properties of Petri Nets 

  Most important analysis problems for Petri nets: 
  reachability and coverability 

  liveness 

  boundness 

  safeness 

  conservation 
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Reachability 

  Marking µ is reachable from marking µ0 if there exists a 
sequence of firings s = µ0 t1 µ1 t2 µ2… µ that transforms 
µ0 to µ. 

  The reachability problem is decidable. 
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Liveness 

  Liveness: from any marking any transition can become 
fireable 

  Liveness implies deadlock freedom, not viceversa 
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Boundness 

  Boundedness: the number of tokens in any place cannot 
grow indefinitely 
  (1-bounded also called safe) 

  Application: places represent buffers and registers 
(check there is no overflow) 
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Conservation 

  Conservation: the total number of tokens in the net is 
constant 
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Analysis Techniques 

  State Space Analysis techniques 
  Reachability Tree or Coverability Graph 

  Structural analysis techniques 
  Incidence matrix 
  T- and S- Invariants 
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The Reachanility Tree 
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Infinite Tree 
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Reachability Tree 

  We will try to limit the tree to the finite size (notice, 
however, that it will usually result in the lost of 
information) 

  We introduce three types of nodes 
  frontier 

  terminal 

  duplicate 
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An extended marking 

  Let us assume that after sequence of transitions σ we 
will end up in marking µ’ from µ 

	

and  µ’ > µ 
	

  µ’ = µ + (µ’-µ)  and    (µ’ - µ) > 0 

since transition firing can be repeated it can lead to µ’’ 
   µ’’ = µ’ + (µ’-µ) 
 or   µ’’ = µ’ + 2(µ’-µ) 
 after n times we can produce a marking  
   µ’ + n(µ’-µ) 
 which, in fact, produces infinite marking. 
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Infinite Marking 

  infinite number of markings is represented by ω symbol 
with following properties: 
  ω + a = ω	



  ω - a = ω	



  α < ω	



  ω ≤ ω 
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Finite Reachability Tree 
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Analysis Techniques Based 
on Reachabilty Tree 

  it can be used for analysing several properties such as 
  safeness and boundness 
  conservation 
  coverability 

  it cannot be used, in general, to solve problems such as 
  reachability 
  liveness 
  determine which firing sequences are possible 

  limitations => loss information by the use of ω symbol 
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Matrix Equations 

  An alternative definition of Petri nets 
  instead of defining (P, T, I, O), we define  

(P, T, D-, D+), where two matrices D- and D+represent 
input and output function 

  we define 
  D-[i, j] = #(pi, I(tj)) 
  D+[i, j] = #(pi, O(tj)) 

  the transition tj is represented by the unit  
m-vector e[j] 
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Matrix Equations (cont’d) 

  transition tj is enabled in a marking µ if 
  µ  ≥ e[j]⋅D- 

  the result of firing transition tj in marking µ, if it is 
enabled, is 

  δ(µ, tj) = µ - e[j]⋅D- + e[j]⋅D+  
    = µ + e[j]⋅(- D- + D+) 
    = µ + e[j]⋅D 
  where D = D+ - D- 
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Matrix Equations - Example 
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Examples 
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Examples (cont’d) 

  To determine if the marking (1, 8, 0, 1) is reachable 
from the marking (1, 0, 1, 0), we have the equation 
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  which has a solution x = (0, 4, 5) and sequence the 
s = t3t2t3t2t3t2t3t2t3. 
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Matrix Equations - Problems 

  matrix D by itself does not properly reflect the structure 
of the Petri net - self loops disappear. 

  lack of sequencing information in the firing vector. 

  a solution of equation µ’ = µ + x ⋅ D is necessary for 
reachability but it is not sufficient 
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Summary of Petri Nets 
 

  Graphical formalism 
  Distributed state (including buffering) 

  Concurrency, sequencing and choice made explicit 

  Structural and behavioral properties 

  Analysis techniques available 
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Petri Nets Extensions 
 

  Add interpretation to tokens and transitions 
  Colored nets (tokens have value) 

  Add time 
  time/timed Petri Nets (deterministic delay) 

  type (duration, delay) 
  where (place, transition) 
  control (weak, strong) 

  Stochastic PNs (probabilistic delay) 
  Generalized Stochastic PNs (timed and immediate 

transitions) 

  Add hierarchy 
  Place Chart Nets 
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Time Petri Nets (TPN’s) 

ti (a, b) 

   a (0 ≤ a), is the minimal time that 
must elapse, starting from the time 
at which transition ti is enabled, until 
this transition can fire, 

   b (0 ≤ b ≤ ∞), denotes the maximal 
time during which transition ti can 
be enabled without being fired. 

Reference: B. Berthomieu and M. Diaz, Modeling and Verification of Time Dependent Systems 
Using Time Petri Nets, IEEE Trans. on Software Engineering, vol. 17, no. 3, March 1991. 
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TPN example 
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Some Properties of TPN’s 

  The reachability and boundness problems for TPN’s are 
undecidable. 

  There exist subclasses of TPN’s which are bound. 
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