]
Design representations	
Control Oriented Models	
Kris Kuchcinski	
KIIS KUCIICIIISKI	
Krzysztof.Kuchcinski@cs.lth.se	
Ti Ly SE to III tu o II o III ski go sii tii se	
2012-03-30 1	
	-
Models	
"A theory has only the alternative of being right or	
wrong. A model has a third possibility: it may be right,	
but irrelevant."	
Manfred Eigen (1927 -) Jagdish Mehra (ed.) The Physicist's Conception	
of Nature, 1973.	
2012-03-30 2	
	1
Control Flow Models	
FSM (Mealy and Moore)	
■ FSM extensions	
Codesign FSM	
Communicating FSM	
Petri nets	
StateCharts	
Discrete Event	
CCS, CSP,	
·	
2012-03-30 3	

Application Areas Reactive systems Control functions Protocols (telecom, computers, ...) ...

FSM basics

- Different communication mechanisms:
 - synchronous (classical FSM's, Moore, Mealy)
 - asynchronous (CCS, Milner '80; CSP, Hoare '85)
- Mealy and Moore state machines FSM = <S, I, O, δ, λ> S is set of states

I is set of inputs (conditions)

δ is a next-state function, δ: $S \times I \rightarrow S$

 λ is an output function, $\lambda : \ S \times I \ \to \ O$ for Mealy machine $\lambda : \ S \to \ O \ \text{for Moore machine}$

2012-03-30

FSM Model for Elevator Controller Mealy Machine T2/u1 T1/d1 T3/n 2012-03-30

Moore vs. Mealy machines

- Theoretically, same computational power (almost)
- In practice, different characteristics
- Moore machines:
 - I non-reactive (response delayed by 1 cycle)
 - easy to compose (always well-defined)
- Mealy machines:
 - reactive (0 response time)
 - I hard to compose (problem with combinational cycles)

2012-03-30

Problems with FSM's

- How to reduce the size of the representation?
- Solution hierarchical concurrent finite state machines
- Example Harel's StateCharts
- 3 orthogonal exponential reductions
 - I hierarchy,
 - concurrency,
 - I non-determinism.

2012-03-3

Petri Nets

- Model introduced by C.A. Petri in 1962 Ph.D. Thesis: "Communication with Automata"
- Applications: distributed computing, manufacturing, control, communication networks, transportation...
- Petri nets describe explicitly and graphically:
 - sequencing/causality,
 - conflict/non-deterministic choice,
 - concurrency.
- Asynchronous model (partial ordering)
- Main drawback: no hierarchy

Petri Net example

2012-03-30

Definition

A Petri net structure, C, is a four tuple

C = (P, T, I, O)

 $\mathsf{P} = \{\mathsf{p}_1,\,\mathsf{p}_2,\,...,\,\mathsf{p}_n\} \text{ is a finite set of places, } \mathsf{n} \geq \mathsf{0};$

 $T = \{t_1,\,t_2,\,...,\,t_m\} \text{ is a finite set of transitions, } m \geq 0;$

 $P \cap T = \emptyset$

I: $T \to P^{\infty}$ is the input function, a mapping from transitions to *bags* of places;

0: T → P[∞] is the output function, a mapping from transitions to *bags* of places;

2012-03-3

Petri Net Marking

- A marking m of a Petri net C = (P, T, I, O) is a function from the set of places P to the non-negative integer μ: P → N
- A marking represents an assignment of tokens to the places.
- $\begin{array}{l} \blacksquare & \text{A marking m can also be defined as an n-vector,} \\ \mu = (\mu_1, \ \mu_2, \ ..., \ \mu_n), \text{ where n= } |P| \text{ and } \mu_i \in N, \ i = 1, 2, ..., \\ \text{n. The number of tokens in the place } \rho_i \text{ is denoted by } \mu_i. \end{array}$
- A marked Petri net M = (C, μ) is a Petri net structure C = (P, T, I, O) and a marking μ .

2012-03-30

Summary

- A (C,μ₀) is a Petri Net Graph N
- places: represent distributed state by holding tokens
 - I marking (state) μ is an n-vector ($\mu_1,\mu_2,\mu_3...$), where μ_i is the non-negative number of tokens in place pi.
 - I initial marking (μ_0) is initial state
- transitions: represent actions/events
 - I enabled transition: enough tokens in predecessors
 - I firing transition: modifies marking
- ...and an initial marking μ₀.
- Place/Transition <=> conditions/events

2012-03-30

Firing Rules

- The execution of a Petri net is carried out by firing transitions, which moves tokens from places to places.
- $\begin{tabular}{ll} I A transition $t_i \in T$ in a marked Petri net $C = (P, T, I, O)$ with marking m is $enabled$ if for all $p_i \in I(t_j)$ <math display="block"> \mu(p_i) \geq \#(p_i, I(t_j))$
- A transition t_j in a marked Petri net with marking μ <u>may</u> fire whenever it is enabled. Firing an enabled transition t_j results in a new marking μ' defined by μ'(p_j) = μ(p_j) - #(p_j, I(t_j)) + #(p_j, O(t_j))

 $\#(p_i,\ I(t_j))\ \ (\#(p_i,\ O(t_j))) - number\ of\ occurrences\ of\ p_i\ in\ I(t_i)\ (O(t_j))$

2012-03-30

Properties of Petri Nets	
Most important analysis problems for Petri nets:	
reachability and coverabilityliveness	
boundness	
safeness	
I conservation	
2012-03-30 22	
	J
	1
Reachability	
Marking μ is <i>reachable</i> from marking μ_0 if there exists a	-
• Marking μ is reachable from marking μ_0 if there exists a sequence of firings $s = \mu_0 t_1 \mu_1 t_2 \mu 2 \mu$ that transforms μ_0 to μ .	
 The reachability problem is decidable. 	
	-
2012-03-30 23	
	J
	1
Liveness	
Liveness: from any marking any transition can become	-
fireable	
Liveness implies deadlock freedom, not viceversa	
2012-03-30 24	

Boundness	
Boundedness: the number of tokens in any place cannot grow indefinitely	
(1-bounded also called safe)Application: places represent buffers and registers	
(check there is no overflow)	
2012/03-30 25	
Conservation	
Conservation: the total number of tokens in the net is constant	
constant	
2012/03-30 28	
an industrial and a second and	
Analysis Techniques	
State Space Analysis techniquesReachability Tree or Coverability Graph	
Structural analysis techniquesIncidence matrix	
T- and S- Invariants	
2012-03-30 27	

Reachability Tree We will try to limit the tree to the finite size (notice, however, that it will usually result in the lost of information) We introduce three types of nodes frontier terminal duplicate

An extended marking

 \blacksquare Let us assume that after sequence of transitions σ we will end up in marking μ^{\prime} from μ

and
$$\mu' > \mu$$

and
$$\mu' > \mu$$

 $\mu' = \mu + (\mu' - \mu)$ and

 $(\mu' - \mu) > 0$ since transition firing can be repeated it can lead to μ " μ " = μ ' + (μ '- μ)
or μ " = μ ' + 2(μ '- μ)

$$\mu'' = \mu' + (\mu' - \mu)$$
or
 $\mu'' = \mu' + 2(\mu' - \mu)$

$$\mu' + n(\mu' - \mu)$$
 which, in fact, produces infinite marking.

Infinite Marking

Infinite number of markings is represented by ω symbol with following properties:

$$\omega + a = \omega$$

$$\omega$$
 - a = ω

$$\alpha < \omega$$

2012-03-30

Finite Reachability Tree (1,0,0) (1,ω,0) (1,ω,0) (0,ω,1) $(0, \omega, 1)$

Analysis Techniques Based on Reachabilty Tree

- it can be used for analysing several properties such as
 - safeness and boundness
 - conservation
 - coverability
- it cannot be used, in general, to solve problems such as
 - reachability
 - liveness
 - I determine which firing sequences are possible
- Imitations => loss information by the use of ω symbol

2012-03-30

Matrix Equations

- An alternative definition of Petri nets
 - I instead of defining (P, T, I, O), we define (P, T, D⁻, D⁺), where two matrices D⁻ and D⁺represent input and output function
 - we define

I the transition $\mathbf{t_j}$ is represented by the unit m-vector e[j]

2012-03-30

35

Matrix Equations (cont'd)

- I transition t_j is enabled in a marking μ if $\mu \ge e[j] \cdot D^T$
- In the result of firing transition t_{j} in marking $\mu,$ if it is enabled, is

$$\delta(\mu, t_j) = \mu - e[j] \cdot D^{-} + e[j] \cdot D^{+}$$

$$= \mu + e[j] \cdot (-D^{-} + D^{+})$$

$$= \mu + e[j] \cdot D$$
where D = D⁺ - D⁻

2012-03-30

Matrix Equations - Example

$$D^{-} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$D^+ = \begin{bmatrix} 1000 \\ 0210 \\ 0001 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 - 1 - 1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

2012-03-30

I firing t₃

$$\mu^{'} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 - 1 - 1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$$

Examples

I firing $t_3 t_2 t_3 t_2 t_1$

$$\mu^{'} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \times \begin{bmatrix} 0 - 1 - 1 & 0 \\ 0 & 2 & 1 - 1 \\ 0 & 0 - 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 3 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & 0 \end{bmatrix}$$

2012-03-30

Examples (cont'd)

■ To determine if the marking (1, 8, 0, 1) is reachable from the marking (1, 0, 1, 0), we have the equation

$$\begin{bmatrix} 1 & 8 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} + x \times \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 8 & -1 & 1 \end{bmatrix} = x \times \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

which has a solution x = (0, 4, 5) and sequence the s = $t_3t_2t_3t_2t_3t_2t_3t_2t_3$.

2012-03-30

Matrix Equations - Problems matrix D by itself does not properly reflect the structure of the Petri net - self loops disappear. lack of sequencing information in the firing vector. \blacksquare a solution of equation μ' = μ + x \cdot D is necessary for reachability but it is not sufficient **Summary of Petri Nets** Graphical formalism Distributed state (including buffering) Concurrency, sequencing and choice made explicit Structural and behavioral properties Analysis techniques available 2012-03-30 **Petri Nets Extensions** Add interpretation to tokens and transitions Colored nets (tokens have value) Add time I time/timed Petri Nets (deterministic delay)

type (duration, delay) where (place, transition) control (weak, strong)

transitions)

Add hierarchy

Place Chart Nets

Stochastic PNs (probabilistic delay)

Generalized Stochastic PNs (timed and immediate

Time Petri Nets (TPN's)

- $\begin{tabular}{ll} $a\ (0 \le a)$, is the minimal time that must elapse, starting from the time at which transition t_i is enabled, until this transition can fire, \end{tabular}$
- **■** b $(0 \le b \le \infty)$, denotes the maximal time during which transition t_i can be enabled without being fired.

Reference: B. Berthomieu and M. Diaz, Modeling and Verification of Time Dependent Systems Using Time Petri Nets, IEEE Trans. on Software Engineering, vol. 17, no. 3, March 1991.

2012-03-30

43

TPN example

2012-03-30

Some Properties of TPN's

- The reachability and boundness problems for TPN's are undecidable.
- There exist subclasses of TPN's which are bound.

2012-03-30

Literature

- Tadao Murata, "Petri Nets: Properties, Analysis and Applications", Proceedings of IEEE, vol. 77, no. 4, April 1989.
- Bernard Berthomieu and Michel Diaz, "Modeling and Verification of Time Dependent Systems Using Time Petri Nets", IEEE Trans. on Software Engineering, vol. 17, no. 3, March 1991.
- D. Harel, et. al., "STATEMATE: A Working Environment for the Development of Complex Reactive Systems", IEEE Trans. on Software Engineering, vol. 16, no. 4, April 1990.

3-30

_	
·	·