Design representations

Data-flow Process Networks

Kris Kuchcinski
Krzysztof.Kuchcinski@cs.lth.se

Why Computational Models?

- To formalize the model of a system.
- To be able formally analyze, estimate parameters, verify and synthesize the system.
- To support specify-explore-refine scenario.
- Mathematical (assertions or properties) vs. constructive model (computational procedure; called executable also).
- ...

Why Specialized Models

- General models (Turing-complete) are too powerful and therefore difficult to handle.
- Different models provide different properties.
- Some problems may be undecidable in powerful models.
- Complexity of analysis algorithms for general models.
- There exist powerful models for particular application domains.
- Division between data and control flow models.

Why Specialized Models (cont'd)

- Most of the models of computations are sufficiently expressive to subsume most of other models
but
- this fails to acknowledge the strength and weakness of each model.
- For example, rendezvous is very good in resource management but very awkward for loosely coupled data-oriented computations.

Data vs. Control Flow Models

- Fuzzy distinction, yet useful for:
 - specification (language, model, ...)
 - synthesis (scheduling, optimization, ...)
 - validation (simulation, formal verification, ...)
- Rough classification:
 - control:
 - don’t know when data arrive (quick reaction)
 - time of arrival often matters more than value
 - data:
 - data arrive in regular streams (samples)
 - value matters most

"The purpose of models is not to fit the data but to sharpen the questions."

Samuel Karlin, (1923 -)
Data vs. Control Flow Models (cont'd)

- Specification, synthesis and validation methods emphasize:
 - for control:
 - event/reaction relation
 - response time
 - (Real Time scheduling for deadline satisfaction)
 - priority among events and processes
 - for data:
 - functional dependency between input and output
 - memory/time efficiency
 - (Dataflow scheduling for efficient pipelining)
 - all events and processes are equal

Dataflow Models — Application Areas

- Signal processing (including image processing) applications.
- Commercial systems using dataflow process networks:
 - SPW (Signal Processing Worksystem)- Alta Group of Cadence,
 - COSSAP — Synopsys,
 - DSP Station — Mentor Graphics,
 - MATLAB,
 - ...

Second-Order Filter Section

\[
x + dx + m_1 = o_1 \]

Second-Order Filter Section (cont'd)

\[
x + dx + m_2 + m_3 + m_4 = o_1 \]

Data-flow Model Intuition

- partial order
- multiple tokens
- multiple context
- "interleaving" computations
- feedback loops
- operation types (functions, etc.)

Process Networks

- communicating processes with directed flow.
- communication: token “stream” between two processes
- process: operations on tokens
- host language: process description
- coordination language: network description
Kahn process networks (1958)
- special class of process networks.
- stream is FIFO with unbounded capacity.
- process:
 - destructive read ("consumption") at process start,
 - non-destructive write ("production") at process end,
 - blocking read — process only executed if data available,
 - non-blocking write.

Kahn process networks example
\[[1, 2, 3, 2, ...] \]
\[[0, 1] \]

Kahn process networks — formalism
Sequence (a stream) \(X = [x_1, x_2, ...] \)
Prefix ordering \([x_1, x_2] \subseteq [x_1, x_2, x_3] \)
Increasing chain of seq. \(X = (x_0, x_1, ...) \) where \(X_0 \subseteq X_1 \)
Least upper bound \(\text{lub} X \subseteq Y \) where \(X_i \subseteq Y \) for all \(X_i \subseteq X \)

Continuous process \(F \) (lub \(\chi \)) = lub \(F (\chi) \)

(Least) Upper Bound
- Given a subset \(Y \) of \(S \), an upper bound of \(Y \) is an element \(z \) of \(S \) such that \(z \) is larger than all elements of \(Y \)
- Consider now the set \(Z \) (subset of \(S \)) of all the upper bounds of \(Y \)
- If \(Z \) has a least element \(u \), then \(u \) is called the least upper bound (lub) of \(Y \)
- The least upper bound, if it exists, is unique
- Note: \(u \) might not be in \(Y \) (if it is, then it is the largest value of \(Y \))

Kahn process networks — formalism
p-tuple of sequences \(X = (X_0, X_1, ..., X_p) \subseteq S^p \)
ordered set of seq. \(X \subseteq X' \) if \(X_i \subseteq X'_i \) for each \(i \)
set of p-tuple of sequences \(\chi = (X_0, X_1, ...) \)
functional process \(F : S^p \rightarrow S^q \)

Continuous process \(F \) (lub \(\chi \)) = lub \(F (\chi) \)

Kahn process networks — formalism
- Monotonicity
 \(X \subseteq X' \Rightarrow F (X) \subseteq F (X') \)
- It can be proved that a continuous process is monotonous
 - given a part of the input sequence it may be possible to compute part of the output sequence.
Least Fixed Point semantics

- Let X be the set of all sequences.
- A network is a mapping F from the sequences to the sequences (where I represents the input sequence): $X = F(X, I)$
- The behavior of the network is defined as the unique least fixed point of the equation \(LFP \).
- If F is continuous then the least fixed point exists
 \[\text{LFP} = \text{LUB} \left(\{ F^n (\bot, I) : n \geq 0 \} \right) \]

Non-monotonic processes

- "Canonical" non-monotonic process: fair merge

\[\begin{align*}
\{ x_1, x_2, x_3, \ldots \} & \rightarrow \{ y_1, y_2, y_3, \ldots \} \\
\{ x_2, x_3, \ldots \} & \rightarrow \{ y_1, x_1, y_2, \ldots \} \\
\{ x_1, x_2, \ldots \} & \rightarrow \{ y_1, y_2, y_3, \ldots \} \\
\end{align*} \]

- In the previous example, we have:
 \((\{ x_1, x_2 \}, \{ y_1, y_2, y_3, \ldots \}) \subseteq (\{ x_1, x_2, x_3, \ldots \}, \{ y_1, y_2, y_3, \ldots \}) \)
 but
 \((\{ y_1, y_2, y_3, \ldots \}, \{ x_1, x_2, x_3, \ldots \}) \)
 are incomparable.
- The process is not monotonic (needs prediction of the future to be really fair).
- The least fixed point may not exist.

Dataflow Networks

- A data-flow network is a collection of functional nodes which are connected and communicate over unbounded FIFO queues.
- Nodes are commonly called actors.
- Data that are communicated over the queues are commonly called tokens.
- Each Khan’s process becomes an actor with define firing rule and function.

Intuitive semantics

- Actors (often stateless) perform computation.
- Unbounded FIFO’s perform communication via sequences of tokens carrying values
 - integer, float, fixed point, matrix of integer, float, fixed point, image of pixels.
- State implemented as self-loop.
- Determinacy (based on Khan’s results):
 - unique output sequences given unique input sequences,
 - Sufficient condition: blocking read (actor cannot test input queues for emptiness).

Intuitive semantics

- At each time, one actor is fired.
- When firing, an actor consumes input tokens and produces output tokens.
- Actors can be fired only if there are enough tokens in the input queues.
Firing Rules

- An actor with $p \geq 1$ input streams can have N firing rules $R = \{R_1, R_2, \ldots, R_N\}$.
- The actor can fire iff one or more firing rules is satisfied.
- Typical firing rule $R_i = \{[*], [*]\}$ meaning that the actor fires iff each of two inputs have at least one token.

Continuous Data-flow Networks

- A sufficient conditions for data-flow process to be continuous:
 - each actor firing has to be functional — lacks side effects and output tokens are a function of input tokens.
 - set of firing rules has to be sequential — firing rules can be tested in a pre-defined order using only blocking reads.

An Example — FIR filter

- single input sequence $i(n)$
- single output sequence $o(n)$
- $o(n) = c_1 \cdot i(n) + c_2 \cdot i(n-1)$

Examples of Data-flow actors

SDF: Synchronous (Static) Data-flow
- fixed input and output tokens

BDF: Boolean Data-flow
- control token determines consumed and produced tokens

Sequential Firing Rules

1. Find an input such that $[*] \subseteq R_{i,j}$ for all $i = 1 \ldots N$. That is, find an input such that all the firing rules require at least one token from that input (j). If no such input exists, fail.
2. For the choice of input (j), divide the firing rules into subsets, one for each specific token value mentioned in the first position of $R_{i,j}$ for any $i = 1 \ldots N$. If $R_{i,j} = \{[*], \ldots\}$, then the firing rule should appear in all such subsets.
3. Remove the first element of $R_{i,j}$ for all $i = 1 \ldots N$.
4. If all subsets have empty firing rules, then succeed. Otherwise, repeat these four steps for any subset with any non-empty firing rules.
Sequential Firing Rules

Selector Example

\[R_1 = \{ [\cdot], \bot, [T] \} \quad , \quad R_2 = \{ \bot, [\cdot], \{F\} \} \]

- \(j = 3 \)
- \(\{R_1\} \) and \(\{R_2\} \)
- \(R_1 = \{ [\cdot], \bot, \bot \} \quad , \quad R_2 = \{ \bot, [\cdot], \bot \} \)
- Remove \(R_{11} \) and \(R_{22} \)
- \(R_1 = \{ \bot, \bot, \bot \} \quad , \quad R_2 = \{ \bot, \bot, \bot \} \)
- Empty firing rules \(\Rightarrow \) sequential

Sequential Firing Rules

Merger Example

\[R_1 = \{ [\cdot], \bot \} \quad , \quad R_2 = \{ \bot, [\cdot] \} \]

- Fails immediately in step 1 \(\Rightarrow \) non-sequential.

Properties of Dataflow Networks for Design

- Static scheduling is possible for static networks.
- Different trade-offs such as code size, buffer size, pipelining are possible.
- Static scheduling can be used for simulator generator, DSP code generation and HW synthesis.
- Modeling power is limited but ...
- Semi-static scheduling of if-then-else and loops.

Properties of Dataflow Networks

- It has been shown that the addition of only select actor and switch actor to synchronous data-flow model is sufficient to make it Turing complete.

Summary

- Advantages:
 - Easy to use (graphical languages)
 - Powerful algorithms for
 - verification (fast behavioral simulation)
 - synthesis (scheduling and allocation)
 - Explicit concurrency
- Disadvantages:
 - Efficient synthesis only for restricted models
 - Cannot describe reactive control (blocking read)

Literature