
Synthesis from VHDL
KRZYSZTOF KUCHCINSKI

KRZYSZTOF.KUCHCINSKI@CS.LTH.SE

Outline

General assumptions

IEEE Standard logic package (Std_logic_1164)

Synthesis
Combinational logic
Sequential logic
Finite State Machines (FSMs)

Kris Kuchcinski Synthesis from VHDL 1

General assumptions

General assumptions

• only subset of VHDL is synthesizable,

• selected data types are supported,

• RTL and HLS synthesis (we concentrate mostly on RTL synthesis),

• description style has usually quite a big impact on the synthesized hardware,

• differences between different vendors.

Kris Kuchcinski Synthesis from VHDL 2

IEEE Standard logic package (Std_logic_1164)

IEEE Standard logic package

• VHDL defines only basic features to model digital devices, such as, simple BIT type,
two types of a delay, etc.

• more complex data types for signals must be defined for realistic simulation.

An Example:

entity nand_2 is
port (I1, I2: in bit; O: out bit);
-- interface description for
-- two input nand gate

end nand_2;

architecture standard of nand_2 is
begin

O <= NOT (I1 AND I2) after 2.5 ns;
end standard;

Kris Kuchcinski Synthesis from VHDL 3

IEEE Standard logic package

Why we need more complex logic definition than BIT:

• we want to get more accurate simulation results,

• we use different technology and we want to simulate the same design in different
technologies,

• real world is more complex than ’0’ and ’1’,
• more complex delays than standard VHDL models

– inputs, output delays,
– rising edge, falling edge delays,
– min, max and typical delays,

Kris Kuchcinski Synthesis from VHDL 4

Std_logic_1164
Requirements:

• support for more realistic signal modeling,
• technology independence, allowing extensions for the future and providing support

for all current technologies,
• provide consistent features which facilitate logic level modeling,
• hide the complexity of the package from the designer as much as possible, make

models readable,
• provide for the timing accuracy continuum, giving the modeler flexibility to choose

the appropriate level of model accuracy.
Intended use of the packages:

-- access standard logic facilities
use ieee.Std_logic_1164.all;
-- VHDL entity declaration
--

Kris Kuchcinski Synthesis from VHDL 5

Std_logic_1164

Requirements:

• modeling signals with ’0’ and ’1’ simplifies the real circuit, because it only consider
signal voltage without signals current,

• many simulators introduce, so called, signal strength related to the signal’s current,
• in std_logic_1164 we will introduce the following strengths of signals:

– unknown,
– forced (connected directly to ground or Vcc),
– weak (connected to ground or Vcc through high resistive connection),
– high impedance,
– don’t care.

Kris Kuchcinski Synthesis from VHDL 6

Std_logic_1164

library IEEE;
PACKAGE Std_logic_1164 is

-- Logic State System (unresolved)

TYPE std_ulogic is (’U’, -- Uninitialized

’X’, -- Forcing Unknown
’0’, -- Forcing 0
’1’, -- Forcing 1
’Z’, -- High Impedance
’W’, -- Weak Unknown
’L’, -- Weak 0
’H’, -- Weak 1
’-’ -- don’t care
);

Kris Kuchcinski Synthesis from VHDL 7

Std_logic_1164

-- Unconstrained array of std_ulogic for use with
-- the resolution function

TYPE std_ulogic_vector IS ARRAY

(NATURAL RANGE <>) of std_ulogic;

-- Resolution function

FUNCTION resolved (s : std_ulogic_vector)

RETURN std_ulogic;

Kris Kuchcinski Synthesis from VHDL 8

Std_logic_1164

-- *** Industry Standard Logic Type ***

SUBTYPE std_logic IS resolved std_ulogic;

-- Unconstrained array of std_logic for use in
-- declaring signal arrays

TYPE std_logic_vector IS ARRAY

(NATURAL RANGE <>) of std_logic;

Kris Kuchcinski Synthesis from VHDL 9

Std_logic_1164

-- Basic states + Test

SUBTYPE X01 is resolved std_ulogic range ’X’ to ’1’;

-- (’X’,’0’,’1’)
SUBTYPE X01Z is resolved std_ulogic range ’X’ to ’Z’;

-- (’X’,’0’,’1’,’Z’)
SUBTYPE UX01 is resolved std_ulogic range ’U’ to ’1’;

-- (’U’,’X’,’0’,’1’)
SUBTYPE UX01Z is resolved std_ulogic range ’U’ to ’Z’;

-- (’U’,’X’,’0’,’1’,’Z’)

-- Overloaded Logical Operators

FUNCTION "and" (l : std_ulogic; r : std_ulogic)

RETURN UX01;
:

FUNCTION "not" (l : std_ulogic)
RETURN UX01;

Kris Kuchcinski Synthesis from VHDL 10

Use of Std_logic_1164

Example:

entity nand_2 is
port (I1, I2: in std_logic; O: out std_logic);
-- interface description for
-- two input nand gate using std_logic_1164

end nand_2;

architecture standard of nand_2 is
begin

O <= NOT (I1 AND I2) after 2.5 ns;
end standard;

Kris Kuchcinski Synthesis from VHDL 11

Synthesis

Synthesis

• different synthesis levels (behavioral, RTL, logic),

• differnet tools have different assumptions on specification styles,

• distinction between combinational logic and sequential logic.

Kris Kuchcinski Synthesis from VHDL 12

Synthesis

Supported VHDL Language Constructs:

• Entity, Architecture and Package design units.

• Function and Procedure sub-programs

• IEEE Libraries - Std_Logic_1164, Std_Logic_Unsigned, Std_Logic_Signed,
Numeric_Std and Numeric_Bit

• Ports of mode in, out, inout and buffer

• Signals, Constants and Variables (the latter should be restricted to sub-programs
and processes)

• Composite types - Arrays and Records

• Integer and subtypes Natural and Positive (Integer types should have a range
constraint unless a 32-bit word is required)

Kris Kuchcinski Synthesis from VHDL 13

Synthesis (cont’d)

Supported VHDL Language Constructs:

• User defined enumeration types (eg. type State_type is (s0, s1, s2, s3);).

• Operators - +, - , *, /, **, mod, rem, abs, not, =, /=, <, >, <=, >=, and, or, nand, nor,
xor, xnor, sll, srl, sla, sra, rol, ror, & . (Notes: /, mod and rem are usually
supported for compile-time constants or when the right-hand argument is a power
of 2. The shifting operators are usually supported for compile-time constant shift
values)

• Sequential statements - signal and variable assignments, wait, if, case, loop, for,
while, return, null, function and procedure call.
Note:

– only a single wait statement is allowed in a process,
– Only bounded loops are accepted.

Kris Kuchcinski Synthesis from VHDL 14

Synthesis (cont’d)

Supported VHDL Language Constructs:

• Concurrent statements - signal assignment, process, block, component
instantiation, sub-program call, generate.

• Generic ports in entities.

• Predefined attributes - ’range, ’event

• Aggregates and others clause.

Kris Kuchcinski Synthesis from VHDL 15

Synthesis (cont’d)

Unsupported VHDL Language Constructs:

• Access and File types - the former are similar to C’s pointers and files have no
direct correspondence to hardware.

• Register and Bus kind signals - very rarely used VHDL constructs.

• Guarded blocks - as above, rarely used.

• Next and Exit loop control statements - A synthesis tool creates logic from a loop
by ’unrolling’ the loop into a series of computations, often resulting in iterative
circuits. Prematurely terminating a loop prevents this unrolling process.

Kris Kuchcinski Synthesis from VHDL 16

Synthesis (cont’d)

Unsupported VHDL Language Constructs:

• Objects of type Real - floating point numbers cannot be mapped to hardware and
therefore are not supported.

• User defined resolution functions - prior to IEEE Standard 1164, designers made up
their own multi-valued logic systems and resolution functions to support technology
related aspects of simulation. None of these custom solutions is standard, and
therefore none are supported by synthesis.

Kris Kuchcinski Synthesis from VHDL 17

Synthesis (cont’d)

Ignored Constructs:

• Assert and report statements - these are included in a design to send messages to
the ’console’ window relaying information about what is happening during a
simulation. As such, they have nothing to do with the hardware of the design.

• After clause - this is used to specify inertial and transport hardware delays in a
design, or alternatively in a test-bench to produce clocks and other control
waveforms. Synthesis tools have no way of creating a specific delay time, unless it
is created by means of counting clock pulses in hardware. Delays may be included
in the pre-synthesis RTL design. However, they will be ignored during the synthesis
process.

Kris Kuchcinski Synthesis from VHDL 18

Combinational process

comb_process:process(A, B)
begin
C <= not(A and B) after 20 ns;
D <= not B after 20 ns;

end process comb_process;

Difference with
comb_process:process(A)
begin
C <= not(A and B) after 20 ns;
D <= not B after 20 ns;

end process comb_process;

Process
A

B

C

D

Kris Kuchcinski Synthesis from VHDL 19

Sequential process

A_process:process
begin

wait clk’event and clk = ’1’
C <= not(A and B);
D <= not B after 10 ns;

end process A_process;

B_process:process
begin

wait clk’event and clk = ’1’
E <= not(D and G);
F <= not G;

end process B_process;

Process A
A

B

C

CLK

D

Process B E

FG

Kris Kuchcinski Synthesis from VHDL 20

Sequential process

Clocked processes lead to all signals, assigned inside the process, in a flip-flop.

example:process
begin

wait clk’event and clk = ’1’
dout <= din;

end process example;

DIN D

CLK

Q

FD
CLK

DOUT

Kris Kuchcinski Synthesis from VHDL 21

If statement

if sel = ’1’
c <= b

else
c <= a;

end if;

MUX

A

B

SEL

C

Kris Kuchcinski Synthesis from VHDL 22

Asynchronous reset

process(clk, reset)
begin

if reset = ’1’ then
data <= ‘‘00’’;

elseif clk’event and clk = ’1’ then
data <= in_data;

end if;
end process;

Kris Kuchcinski Synthesis from VHDL 23

Synchronous reset

process(clk)
begin

if clk’event and clk=’1’ then
if reset = ’1’ then

data <= ‘‘00’’;
else

data <= in_data;
end if;

end if;
end process;

Kris Kuchcinski Synthesis from VHDL 24

Finite State Machines (FSMs)

• exist two types of FSMs, Moore and Mealy,

• contain register(s) for keeping FSM state,

• have logic for computing next state and output,

• can be modeled with combinational and sequential processes.

Kris Kuchcinski Synthesis from VHDL 25

Moore machine

entity demo is
port(clk, in1, reset: in std_logic:

out1:out std_logic_vector(3 downto 0);
end demo;

architecture moore of demo is
type state_type is (s0, s1, s2, s3);
signal state: state_type;

begin
state_process: process(clk, reset)
:

end process;

output_process: process(state)
:

end process;
end moore;

S0
0000

S1
1001

S2
1100

S3
1111

0

1

1

0

Kris Kuchcinski Synthesis from VHDL 26

Moore machine (cont’d)
state_process: process(clk, reset)
begin

if reset = ’1’ then
state <= s0;

elseif clk’event and clk = ’1’ then
case state is
when s0 => if in1 = ’1’ then

state <= s1; end if;
when s1 => if in1 = ’0’ then

state <= s2; end if;
when s2 => if in1 = ’1’ then

state <= s3; end if;
when s3 => if in1 = ’0’ then

state <= s0; end if;
end case;

end if
end process;

Kris Kuchcinski Synthesis from VHDL 27

Moore machine (cont’d)

output_process: process(state)
begin

case state is
when s0 => out1 <= ‘‘0000’’;
when s1 => out1 <= ‘‘1001’’;
when s2 => out1 <= ‘‘1100’’;
when s3 => out1 <= ‘‘1111’’;

end case;
end process;

Kris Kuchcinski Synthesis from VHDL 28

Mealy machine

S0 S1

S2S3

1/1001

0/1100

1/1111

0/0000

rest/0000

rest/1111 rest/1100

rest/1001

Kris Kuchcinski Synthesis from VHDL 29

Mealy machine (cont’d)

• state process – the same as for Moore machine

• output process

output_process: process(state)
begin

case state is
when s0 => if in1 = ’1’ then

out1 <= ‘‘1001’’;
else

out1 <= ‘‘0000’’;
end if;
:

end process;

Kris Kuchcinski Synthesis from VHDL 30

Incompletely defined combinational processes

architecture bad is
begin

process(state)
begin
if a > b then

q <= ’0’;
elseif a < b then

q <= ’1’;
end if;

end process
end;

architecture good is
begin
process(state)
begin

if a > b then
q <= ’0’;

else
q <= ’1’;

end if;
end process

end;

Kris Kuchcinski Synthesis from VHDL 31

Bad synthesis

Kris Kuchcinski Synthesis from VHDL 32

Good synthesis

Kris Kuchcinski Synthesis from VHDL 33

High-level synthesis

High-level synthesis (behavioral, algorithm, architectural synthesis) means going from an
algorithm specification to an RT level which implements the behavior.

• variables are allocated into registers or memory elements (sharing of registers is
possible)- resource allocation,

• operators are allocated to functional units (several operators can be implemented
by one functional unit, for example ALU)- resource allocation,

• operations are assigned to time slots for their execution in a synchronous
implementation- scheduling.

• additional register are added if operations take more than one clock cycle.

Kris Kuchcinski Synthesis from VHDL 34

High-level synthesis – example

Synthesis of the following code (inner loop of differential equation integrator)

while c do
begin

x1 := x + dx;
u1 := u - (3*x*u*dx);
y1 := y + u*dx;
c := x < a;
x := x1; y := y1; u := u1;

end;

Kris Kuchcinski Synthesis from VHDL 35

High-level synthesis – example
data-flow graph

scheduled
data-flow graph

register
allocation

Kris Kuchcinski Synthesis from VHDL 36

