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General assumptions



General assumptions

• only subset of VHDL is synthesizable,

• selected data types are supported,

• RTL and HLS synthesis (we concentrate mostly on RTL synthesis),

• description style has usually quite a big impact on the synthesized hardware,

• differences between different vendors.
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IEEE Standard logic package (Std_logic_1164)

IEEE Standard logic package

• VHDL defines only basic features to model digital devices, such as, simple BIT type,
two types of a delay, etc.

• more complex data types for signals must be defined for realistic simulation.

An Example:

entity nand_2 is
port (I1, I2: in bit; O: out bit);
-- interface description for
-- two input nand gate

end nand_2;

architecture standard of nand_2 is
begin

O <= NOT (I1 AND I2) after 2.5 ns;
end standard;
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IEEE Standard logic package

Why we need more complex logic definition than BIT:

• we want to get more accurate simulation results,

• we use different technology and we want to simulate the same design in different
technologies,

• real world is more complex than ’0’ and ’1’,
• more complex delays than standard VHDL models

– inputs, output delays,
– rising edge, falling edge delays,
– min, max and typical delays,
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Std_logic_1164
Requirements:

• support for more realistic signal modeling,
• technology independence, allowing extensions for the future and providing support

for all current technologies,
• provide consistent features which facilitate logic level modeling,
• hide the complexity of the package from the designer as much as possible, make

models readable,
• provide for the timing accuracy continuum, giving the modeler flexibility to choose

the appropriate level of model accuracy.
Intended use of the packages:

-- access standard logic facilities
use ieee.Std_logic_1164.all;
-- VHDL entity declaration
--
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Std_logic_1164

Requirements:

• modeling signals with ’0’ and ’1’ simplifies the real circuit, because it only consider
signal voltage without signals current,

• many simulators introduce, so called, signal strength related to the signal’s current,
• in std_logic_1164 we will introduce the following strengths of signals:

– unknown,
– forced (connected directly to ground or Vcc),
– weak (connected to ground or Vcc through high resistive connection),
– high impedance,
– don’t care.
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Std_logic_1164

library IEEE;
PACKAGE Std_logic_1164 is

-------------------------------------------------
-- Logic State System (unresolved)
-------------------------------------------------
TYPE std_ulogic is ( ’U’, -- Uninitialized

’X’, -- Forcing Unknown
’0’, -- Forcing 0
’1’, -- Forcing 1
’Z’, -- High Impedance
’W’, -- Weak Unknown
’L’, -- Weak 0
’H’, -- Weak 1
’-’ -- don’t care
);
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Std_logic_1164

-------------------------------------------------
-- Unconstrained array of std_ulogic for use with
-- the resolution function
-------------------------------------------------
TYPE std_ulogic_vector IS ARRAY

( NATURAL RANGE <> ) of std_ulogic;
-------------------------------------------------
-- Resolution function
-------------------------------------------------
FUNCTION resolved ( s : std_ulogic_vector )

RETURN std_ulogic;
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Std_logic_1164

-------------------------------------------------
-- *** Industry Standard Logic Type ***
-------------------------------------------------
SUBTYPE std_logic IS resolved std_ulogic;
-------------------------------------------------
-- Unconstrained array of std_logic for use in
-- declaring signal arrays
-------------------------------------------------
TYPE std_logic_vector IS ARRAY

( NATURAL RANGE <> ) of std_logic;
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Std_logic_1164

-------------------------------------------------
-- Basic states + Test
-------------------------------------------------
SUBTYPE X01 is resolved std_ulogic range ’X’ to ’1’;

-- (’X’,’0’,’1’)
SUBTYPE X01Z is resolved std_ulogic range ’X’ to ’Z’;

-- (’X’,’0’,’1’,’Z’)
SUBTYPE UX01 is resolved std_ulogic range ’U’ to ’1’;

-- (’U’,’X’,’0’,’1’)
SUBTYPE UX01Z is resolved std_ulogic range ’U’ to ’Z’;

-- (’U’,’X’,’0’,’1’,’Z’)
-------------------------------------------------
-- Overloaded Logical Operators
-------------------------------------------------
FUNCTION "and" ( l : std_ulogic; r : std_ulogic )

RETURN UX01;
:

FUNCTION "not" ( l : std_ulogic )
RETURN UX01;
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Use of Std_logic_1164

Example:

entity nand_2 is
port (I1, I2: in std_logic; O: out std_logic);
-- interface description for
-- two input nand gate using std_logic_1164

end nand_2;

architecture standard of nand_2 is
begin

O <= NOT (I1 AND I2) after 2.5 ns;
end standard;
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Synthesis



Synthesis

• different synthesis levels (behavioral, RTL, logic),

• differnet tools have different assumptions on specification styles,

• distinction between combinational logic and sequential logic.
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Synthesis

Supported VHDL Language Constructs:

• Entity, Architecture and Package design units.

• Function and Procedure sub-programs

• IEEE Libraries - Std_Logic_1164, Std_Logic_Unsigned, Std_Logic_Signed,
Numeric_Std and Numeric_Bit

• Ports of mode in, out, inout and buffer

• Signals, Constants and Variables (the latter should be restricted to sub-programs
and processes)

• Composite types - Arrays and Records

• Integer and subtypes Natural and Positive (Integer types should have a range
constraint unless a 32-bit word is required)
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Synthesis (cont’d)

Supported VHDL Language Constructs:

• User defined enumeration types (eg. type State_type is (s0, s1, s2, s3);).

• Operators - +, - , *, /, **, mod, rem, abs, not, =, /=, <, >, <=, >=, and, or, nand, nor,
xor, xnor, sll, srl, sla, sra, rol, ror, & . (Notes: /, mod and rem are usually
supported for compile-time constants or when the right-hand argument is a power
of 2. The shifting operators are usually supported for compile-time constant shift
values)

• Sequential statements - signal and variable assignments, wait, if, case, loop, for,
while, return, null, function and procedure call.
Note:

– only a single wait statement is allowed in a process,
– Only bounded loops are accepted.
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Synthesis (cont’d)

Supported VHDL Language Constructs:

• Concurrent statements - signal assignment, process, block, component
instantiation, sub-program call, generate.

• Generic ports in entities.

• Predefined attributes - ’range, ’event

• Aggregates and others clause.
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Synthesis (cont’d)

Unsupported VHDL Language Constructs:

• Access and File types - the former are similar to C’s pointers and files have no
direct correspondence to hardware.

• Register and Bus kind signals - very rarely used VHDL constructs.

• Guarded blocks - as above, rarely used.

• Next and Exit loop control statements - A synthesis tool creates logic from a loop
by ’unrolling’ the loop into a series of computations, often resulting in iterative
circuits. Prematurely terminating a loop prevents this unrolling process.
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Synthesis (cont’d)

Unsupported VHDL Language Constructs:

• Objects of type Real - floating point numbers cannot be mapped to hardware and
therefore are not supported.

• User defined resolution functions - prior to IEEE Standard 1164, designers made up
their own multi-valued logic systems and resolution functions to support technology
related aspects of simulation. None of these custom solutions is standard, and
therefore none are supported by synthesis.
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Synthesis (cont’d)

Ignored Constructs:

• Assert and report statements - these are included in a design to send messages to
the ’console’ window relaying information about what is happening during a
simulation. As such, they have nothing to do with the hardware of the design.

• After clause - this is used to specify inertial and transport hardware delays in a
design, or alternatively in a test-bench to produce clocks and other control
waveforms. Synthesis tools have no way of creating a specific delay time, unless it
is created by means of counting clock pulses in hardware. Delays may be included
in the pre-synthesis RTL design. However, they will be ignored during the synthesis
process.
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Combinational process

comb_process:process(A, B)
begin
C <= not(A and B) after 20 ns;
D <= not B after 20 ns;

end process comb_process;

Difference with
comb_process:process(A)
begin
C <= not(A and B) after 20 ns;
D <= not B after 20 ns;

end process comb_process;

Process
A

B

C

D

Kris Kuchcinski Synthesis from VHDL 19

Sequential process

A_process:process
begin

wait clk’event and clk = ’1’
C <= not(A and B);
D <= not B after 10 ns;

end process A_process;

B_process:process
begin

wait clk’event and clk = ’1’
E <= not(D and G);
F <= not G;

end process B_process;

Process A
A

B

C

CLK

D

Process B E

FG
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Sequential process

Clocked processes lead to all signals, assigned inside the process, in a flip-flop.

example:process
begin

wait clk’event and clk = ’1’
dout <= din;

end process example;

DIN D

CLK

Q

FD
CLK

DOUT
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If statement

if sel = ’1’
c <= b

else
c <= a;

end if;

MUX

A

B

SEL

C
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Asynchronous reset

process(clk, reset)
begin

if reset = ’1’ then
data <= ‘‘00’’;

elseif clk’event and clk = ’1’ then
data <= in_data;

end if;
end process;
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Synchronous reset

process(clk)
begin

if clk’event and clk=’1’ then
if reset = ’1’ then

data <= ‘‘00’’;
else

data <= in_data;
end if;

end if;
end process;
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Finite State Machines (FSMs)

• exist two types of FSMs, Moore and Mealy,

• contain register(s) for keeping FSM state,

• have logic for computing next state and output,

• can be modeled with combinational and sequential processes.
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Moore machine

entity demo is
port(clk, in1, reset: in std_logic:

out1:out std_logic_vector(3 downto 0);
end demo;

architecture moore of demo is
type state_type is (s0, s1, s2, s3);
signal state: state_type;

begin
state_process: process(clk, reset)
:

end process;

output_process: process(state)
:

end process;
end moore;

S0
0000

S1
1001

S2
1100

S3
1111

0

1

1

0
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Moore machine (cont’d)
state_process: process(clk, reset)
begin

if reset = ’1’ then
state <= s0;

elseif clk’event and clk = ’1’ then
case state is
when s0 => if in1 = ’1’ then

state <= s1; end if;
when s1 => if in1 = ’0’ then

state <= s2; end if;
when s2 => if in1 = ’1’ then

state <= s3; end if;
when s3 => if in1 = ’0’ then

state <= s0; end if;
end case;

end if
end process;
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Moore machine (cont’d)

output_process: process(state)
begin

case state is
when s0 => out1 <= ‘‘0000’’;
when s1 => out1 <= ‘‘1001’’;
when s2 => out1 <= ‘‘1100’’;
when s3 => out1 <= ‘‘1111’’;

end case;
end process;
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Mealy machine

S0 S1

S2S3

1/1001

0/1100

1/1111

0/0000

rest/0000

rest/1111 rest/1100

rest/1001
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Mealy machine (cont’d)

• state process – the same as for Moore machine

• output process

output_process: process(state)
begin

case state is
when s0 => if in1 = ’1’ then

out1 <= ‘‘1001’’;
else

out1 <= ‘‘0000’’;
end if;
:

end process;
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Incompletely defined combinational processes

architecture bad is
begin

process(state)
begin
if a > b then

q <= ’0’;
elseif a < b then

q <= ’1’;
end if;

end process
end;

architecture good is
begin
process(state)
begin

if a > b then
q <= ’0’;

else
q <= ’1’;

end if;
end process

end;
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Bad synthesis
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Good synthesis

Kris Kuchcinski Synthesis from VHDL 33

High-level synthesis

High-level synthesis (behavioral, algorithm, architectural synthesis) means going from an
algorithm specification to an RT level which implements the behavior.

• variables are allocated into registers or memory elements (sharing of registers is
possible)- resource allocation,

• operators are allocated to functional units (several operators can be implemented
by one functional unit, for example ALU)- resource allocation,

• operations are assigned to time slots for their execution in a synchronous
implementation- scheduling.

• additional register are added if operations take more than one clock cycle.
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High-level synthesis – example

Synthesis of the following code (inner loop of differential equation integrator)

while c do
begin

x1 := x + dx;
u1 := u - (3*x*u*dx);
y1 := y + u*dx;
c := x < a;
x := x1; y := y1; u := u1;

end;
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High-level synthesis – example
data-flow graph

scheduled
data-flow graph

register
allocation
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