

Outline			
Basic Aspects			
An Example			
The VHDL Simulation	Mechanism		
Signal Assignment an	d Delay Mechanisms		
VHDL for System Syn	thesis		
			Ä
Kris Kuchcinski	Introduction to VHDL	1	LUN

An Exan	nple		
	Example		
	A four bit parity generator		
	<pre>entity PARITY is port(V:in BIT_VECTOR(3 downto 0); EVEN:out BIT); end PARITY;</pre>		
Kris Kuchcinski	Introduction to VHDL	5	Lu

The VHDL Simulation Mechanism

A Model of Behavior (cont'd)

Example (cont'd)

I ``			
	<pre>use WORK.all; architecture PARITY_STRUCTURAL of PARITY is component XOR_GATE</pre>		
	<pre>port(X,Y: in BIT; Z: out BIT); end component;</pre>		
	<pre>component INV generic(DEL: TIME); port(X: in BIT; Z: out BIT); end component;</pre>		
	signal T1, T2, T3: BIT;		
	<pre>begin XOR1: XOR_GATE port map (V(0), V(1), T1); XOR2: XOR_GATE port map (V(2), V(3), T2); XOR3: XOR_GATE port map (T1, T2, T3); INV1: INV</pre>		
	<pre>generic map (0.5 ns) port map (T3, EVEN); end PARITY_STRUCTURAL;</pre>		
Kris Kuchcinski	Introduction to VHDL	14	LUN

Signal Assignment and Delay Mechanisms

The VHDL Simulation Mechanism

- After *elaboration* of a VHDL model results a set of processes connected through signals.
- The VHDL model is simulated under control of an event driven simulation kernel (*the VHDL simulator*).
- Simulation is a cyclic process; each *simulation cycle* consists of a signal update and a process execution phase.
- A global clock holds the *current simulation time*; as part of the simulation cycle this clock is incremented with discrete values.

Kris Kuchcinski

A signal assignment only affects the projected output waveform, by placing one or more transactions into the driver corresponding to the signal and possibly by deleting other transactions.

Kris Kuchcinski

Introduction to VHDL

The VHDL Simulation Cycle

- The current time T_c is set to T_n
- Each active signal is updated; as result of signal updates events are generated
- Each process that was suspended waiting on signal events that occurred in this simulation cycle resumes; processes also resume which were waiting for a certain, completed, time to elapse
- Each resumed process executes until it suspends
- The time *T_n* of the next simulation cycle is determined as the earliest of the following three time values:
 - 1. TIME'HIGH
 - 2. The next time at which a driver becomes active
 - 3. The next time at which a process resumes

Kris Kuchcinski

Introduction to VHDL

LUND

Signal Assignment Statement furging signment statement furging f

Signal Assignment Statement

The projected output waveform stored in the driver of a signal can be modified by a
signal assignment statement.
signal_assignment_statement ::=
 target <= [transport |
 [reject time_expression] inertial] waveform;</pre>

waveform ::= waveform_element {, waveform_element}

waveform_element ::= value_expression [after time_expression]

S <= transport 100 after 20 ns, 15 after 35 ns; S <= 1 after 20 ns,15 after 35 ns;</pre>

The concrete way a driver is updated as result of a signal assignment depends on the delay mechanism.

Kris Kuchcinski

Introduction to VHDL

28 LUND

Inertial Delay

- Inertial delay models the timing behaviour of current switching circuits: an input value must be stable for a duration before the value propagates to the output.
- Additional update rule (after operations have been performed like for transport delay):
 - all old transactions scheduled to occur *before* the first new transaction are deleted from the projected waveform
 - accepted are those transactions which are immediately preceding the first new transaction and have the same value with it

Inertial Delay – Example

Consider the following assignments executed at simulation time 100 ns (the projected waveform consists of a single transaction with value 0):

 $S \le 1 \text{ after } 20 \text{ ns, } 15 \text{ after } 35 \text{ ns;}$ $S \le 8 \text{ after } 40 \text{ ns, } 2 \text{ after } 60 \text{ ns,}$ 5 after 80 ns, 10 after 100 ns; $S \le \text{ inertial } 5 \text{ after } 90 \text{ ns;}$ $1^{st} \text{ assignment: } \boxed{\begin{array}{c|c} 0 & 1 & 15 \\ 100 \text{ ns } & 120 \text{ ns } & 135 \text{ ns} \end{array}}$

Kris Kuchcinski

Introduction to VHDL

LUND

33

Inertial Delay – Example

Consider the following assignments executed at simulation time 100 ns (the projected waveform consists of a single transaction with value 0):

<pre>S <= 1 after 2 S <= 8 after 4</pre>	0 ns, 2 0 ns, 10	after 6) after	0 ns,					
1 st assignment:	0	1	15					
	100 ns	120 ns	135 ns					
2 nd assignment:	0	8	2	5	10			
	100 ns	140 ns	160 ns	180 ns	200 ns			
								Ä
Kris Kuchcinski	Introduction to VHDL					33		

Consider the follo waveform consist		0			ion time 1	100 ns (the projected
S <= 1 after 2	0 ns, 15	5 after	35 ns;			
S <= 8 after 4						
5 after 8	0 ns, 10) after	100 ns;			
S <= inertial	5 after	90 ns;				
1 st assignment:	0	1	15			
10 assignment.	100 ns	120 ns	135 ns			
2 nd assignment:	0	8	2	5	10	
	100 ns	140 ns	160 ns	180 ns	200 ns	
and the second		_	–			
3 rd assignment:	0	5	5			

