

Outline		
Introduction		
Course Organization		
General introduction	, definition of the field	
Embedded Systems	Examples	
Embedded Systems	Design Methodologies	
		(ji
Kris Kuchcinski	Design of Embedded Systems	1 Lun

Kris Kuchcinski

Design of Embedded Systems

Lectures **Preliminary Schedule** Date Content 20-03-23 Introduction, motivation, etc. 20-03-27 Design methodology (HW/SW co-design, etc) 20-03-30 VHDL introduction 20-04-03 VHDL for synthesis 20-04-06 Computational models 20-04-27 Design representations 20-05-04 System partitioning 20-05-08 Allocation, assignment 20-05-11 and scheduling 20-05-15 Communication synthesis 20-05-18 Testability 20-05-25 Low-power design | ARM presentation LUND Kris Kuchcinski 6 Design of Embedded Systems

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Component class	Implements	Compiler	Specification	
DSP processor	Low data-rate DSP	(Retargetable)	Assembly	
	Slow control loops	code generator	С	
	Appl. Spec. alg.	High level synth.		
Microcontroller	User interface	C compiler	С	
	Slow control loops			
Hardware accelerator	High data-rate DSP	High level synth.	C, VHDL	
	RT level synth.		Verilog	
Communication	Internal & external	Memory mgmt.	Data-sheets	
blocks and	communication	(A)synchronous		
memory	Storage & buffering	interface synth.		
Others	Usually FSMD's	RT level synth.	VHDL	
	 clock generators 	Asynchronous		
	 DMA blocks 	synth.		

Kris Kuchcinski

Design of Embedded Systems

18

Design Domains

- behavioral representations describe only circuit's function, for example
 - if clock=high then counter:= counter+1
- structural representations components and their interconnections, for example

• physical representations - either a geometrical layout or a topological constraint.

Design of Embedded Systems

22

- Different design requirements has to be taken into account, e.g., cost, performance, testability, quality of service, power consumption.
- · Multi-language design framework.

Kris Kuchcinski

Design of Embedded Systems

24

Importance of High-Level Design Methods

System Verification Processing Speeds

System implementation	Processing time (s/frame)		
Behavioral model	1 200 (20 min/frame)		
RTL model	144 000 (1.6 days/frame)		
Gate model	228 000 (2.6 days/frame)		
Gate model on hardware accelerator	1 200		
Rapid prototype	0.5		
Target hardware	0.05		

Source: Paul Clemente, Ron Crevier, Peter Runstadler "RTL and Behavioral Synthesis, A Case Study", VHDL Times, vol. 5, no. 47

Kris Kuchcinski

Design of Embedded Systems

Design of Embedded Systems

31

