GCD: S1H — A Uni-Processor Hw/Sw Solution

(Laboratory Session 5, EDAN15)

Flavius.Gruian@cs.Ith.se

March 8, 2013

1 Introduction

In this laboratory session you will have to integrate the hardware developed in
the previous session into a larger system, similar to one you first built. Further-
more, you should write software containing the necessary communication and
computations, to obtain a functioning hardware /software solution for the ged of
N-numbers problem. In addition you will also have to evaluate your design and
report the device utilization, time (clock cycles), power and energy consump-
tion, in a similar way you did for labs 2 and 3. The development and testing will
be carried out using the FDK 14.z and the Digilent Nexys-3 evaluation board.

2 System Architecture

The architecture for this laboratory session is centered on a MicroBlaze cooper-
ating with your ged accelerator core. Starting from a typical uni-processor sys-
tem (MicroBlaze, LMB controllers, local BRAM, system bus, Uart, and timer)
you should connect your hardware into the system and get it running together
with the processor.

XPS supports custom IP cores, granted they are specified in a standard for-
mat. To be able to rapidly use your core in the XPS, an FSL-based template is
available to you on the course web-page (fsl_hw_template.zip). Unpack the
archive inside your XPS project/pcores directory. It should now contain a
new directory called £s1_hwa v1_00_a.

Overwrite the fs1_hwa_v1_00_a/hdl/vhdl/user_logic.vhd with your own



user_logic.vhd to add the functionality you implemented in the previous lab-
oratory session. After selecting in XPS Project — Rescan User Reposito-
ries, the XPS should contain now a new core fsl_hwa among the others, ready
to place in your design. You find it in the IP Catalog in the left XPS frame,
under Project Repository, Project Local pcores/USER. Also add a duplex FSL
(meaning one FSL processor port, and two FSL buses) and connect it to the
MicroBlaze and your fsl_hwa instance. Remember to connect all the necessary
reset and clock signals as well.

All you have left to do now is to write the software that uses the core
connected to the FSL. To exchange data with the fsl_hwa use the already familiar
getfsl() and putfsl() macros.

3 Design Evaluation

You should use the same procedure for evaluating your system as you employed
in labs two and three. For a fair comparison, use the same data sets used in the
aforementioned labs.

4 Assignment

To wrap it up, during this laboratory session you should:

1. Create the support architecture with your core in it. Make sure you set the
core parameters right and that all signals are connected as they should.

2. Synthesize the whole design (generate bitstream and export to XSDK),
keeping an eye on the synthesis report to make sure it goes through alright.
Note the device utilization data.

3. Ensure that the core works properly inside the system. Write the software
part of the ged application.

4. Carry out time measurements and record the number of cycles. Use the
same data sets you used to evaluate your designs in labs 2 and 3.

5. Record the power and compute the energy consumption for the same data
sets and compiler setups as used in the previous labs.

6. Include all the above data in the final report.

5 Final Remarks & Hints

e Verify with a few lines of code that the hardware receives/sends data
before writing the whole program.



e You might need to reset the system (push the "BTN0” — connected to
reset — button on the board) before inputing data, to make sure your
FSMs start from a correct state.



