
Xilinx EDK Tutorial

Flavius.Gruian@cs.lth.se

March 19, 2013

This tutorial shows you how to create and run a simple MicroBlaze-based system
on a Digilent Nexys-3 prototyping board. Such a system requires both specifying
the hardware architecture and the software running on it. These two are then
combined into one FPGA configuration, which is used to configure the Spartan-6
FPGA located on the Nexys-3 board.

note Please be aware that, as with any tool chain with many contributors,
the software we use in the lab may contain bugs as well as discrepancies
between different versions. The actions described in this tutorial were
carried out for version 14.4, so there might be inconsistencies with your
current tool chain. With a bit of flexibility, similar actions can be carried
out in your lab setup.

note To save disk space, you can always remove temporary files from the project
via Project→Clean All Generated Files. If you work in a common
directory C:/Temp, we strongly encourage you to remove your project at
the end of your session. You are of course welcome to save it in your home
directory.

1 The Sample Design

This tutorial revolves around creating a system (hardware and software) that
can output a simple message via the UART (in our case over USB-UART). The
simplest of programmable hardware architectures that can be built involves a
single processor, a MicroBlaze in our case, and some minimal support for it
(memory, interconnect). On top of this, the functionality for communicating
over the UART is needed. Furthermore, without great effort, one can add func-
tionality for sensing and controlling other physical components present on the
Nexys-3 board (such as push buttons, LEDs, switches). Later on, the tutorial
will show you how to create a double processor hardware architecture, that will
be useful in the following laboratory assignments.

1

Naturally, a programmable hardware architecture will require a program
(software) to run on it. In a second phase, the tutorial will address the steps
needed to build an initial software environment (libraries and programs) re-
quired to implement the simple functionality we mention before: sending a
message through UART.

Finally, the last part of the tutorial describes how to finally configure the
FPGA with the hardware and software you just built, how to run your design
and actually display the output of the UART.

2 Creating the System Architecture (Hardware)

Hardware architectures are created using Xilinx Platform Studio (XPS), a GUI
that helps you to specify

• which processors, memory blocks and other soft IPs (peripherals) to use

• how the different IPs are interconnected

• the memory map, i.e. for addresses for memory mapped IO/peripherals

The output from XPS is that part of the FPGA configuration that describes
the hardware of your system.

2.1 Start Xilinx Platform Studio (XPS)

You can find the program in Windows start menu. start→ all programs→
Xilinx Design Tools→ ISE Design Suite 14.x→ EDK→ Xilinx Platform
Studio

2.2 Create a new design

When you start XPS, you have the possibility of choosing between Getting
Started actions or have a look at the Documentation. To easily create a
basic system, choose Create New Project Using Base System Builder.
This action can also be launched from File→New BSB Project. . . (You may
also start from a completely empty project (Create New Blank Project), and
gradually add the needed cores one by one. This is not recommended, however,
since it can be very time consuming and error prone.)

• In the first wizard dialog, specify the project location and name.

note Note that path cannot contain spaces. We recommend you use the
local C:/Temp/yourdir for all your projects. Working on the local
file system will speed up the tools, compared to using your remote
user directory.

We advise you create a new empty directory here, since XPS will create
a lot of files in the project directory. Whether you choose to build an
AXI based system or a PLB based system, you will also need to specify
the location of the Board Support Package files for the Digilent Nexys-3
board. This tutorial will use the AXI flow in the following.

2

note The files should be available on your computer, along with the Xil-
inx tools. Otherwise the files can be downloaded from the Digilent
website. Make sure you unpack the downloaded zip file.

note There are a couple of significant differences between the AXI and the
PLB flows. The PLB flow can generate a system that includes most of
the board resources, including the Micron RAM and Numonyx PCM
off-chip memories, if one would need to use these. This is also about
to be deprecated, since PLB is an older standard. On the other
hand, the AXI flow uses a newer standard, and can generate systems
with faster clock. However, support for off-chip memories is not
automatically included. This might change in subsequent version of
the Digilent bsp.

In the same dialog, you will have to set the Set Project Peripheral Reposi-
tory Search Path to the path to the directory called lib from the unpacked
zip-file. For instance, on the laboratory machines the support package is
available in C:/Xilinx/BSP. If you plan to use an AXI System, this path
should be set to C:/Xilinx/BSP/Nexys3 AXI BSB Support/lib

note If you forget to do this, or the path is incorrect you will not be able
to select the Digilent Nexys-3 board in the following steps.

Click OK.

• In the next dialog box, Board and System Selection, select Digilent
for Board Vendor and make sure the board name and revision match
your board (Nexys3, revision B). Keep the rest of the options as they are
(Single Processor System, optimize for Area). Click Next.

• In the next dialog box, Processor, Cache, and Peripheral Configu-
ration, you can select the clock frequency for your system, the memory
size and the initial IP cores (for accessing physical board input/output).
We recommend you keep the 100MHz clock, increase the local memory
to 32KB and remove the Ethernet lite core from the included peripheral.
Remove as well all the IPs starting with Digilent, or you will run into some
harder-to-fix issues later on.

note A fast clock frequency imposes rather strict constraints on the design
timing, which may prolong the hardware synthesis time. Also, having
more IP cores increases the demand on area and interconnect routing,
which may also prolong the hardware synthesis time. If you want
to reduce the time you wait for your design to synthesise, you might
want to choose a slow clock and remove as many peripheral as possible
(except the UART).

At this point you may add other cores, such as the axi timer, that may
come in handy later on. You may also add cores after you generated the
initial design. Click Finish.

You have now created your initial hardware platform. At this point you may
simply run logic synthesis to obtain the first part of the FPGA configuration,
as will be explained later.

3

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,897&Prod=NEXYS3

However, this is a good time to explore XPS a bit. Let’s start by looking
at some details of the hardware architecture generated for you. Do not worry if
you do not get all the abbreviations. Here is a partial list:
LMB Local Memory Bus CPU ↔ memory bus (point to point link)
AXI Advanced eXtensible Interface CPU ↔ peripherals (system bus)
GPIO General Purpose IO glue logic for the buttons/leds on the board
UART serial port text input/output of your application

There are a number of frames in the XPS window. The leftmost Navigator
is a navigation menu. The bottom frame is the console useful to inspect the
warnings and errors you might get during synthesis.

The frame right besides the Navigator contains two tabs, Project and IP
Catalog (the tabs are in the bottom of the frame). The Project tab contains the
files describing the generated system, as well as log files and the project options.

note It is worth having a look at the MHS, UCF and the OPT files. For instance
the User Constraint File (UCF) binds external ports in your design to
physical pins on the FPGA. It is important that the names in the design
are the same as in this file, so do not rename the external ports. Also
if you add or remove external pins (when adding/removing a GPIO for
instance), this file must be edited.

The IP Catalog contains a tree of all the IP components you can use in your
system.

The frames to the right in the XPS window are used for exploring and editing
your hardware architecture. The System Assembly View tab in the middle view
offers a structured way of exploring the architecture. The Graphical Design
View tab contains a block schematic of the architecture, containing most of the
signals and cores. The Design Summary tab gathers numerical information and
output reports from the different steps of the synthesis process.

Select the System Assembly, which should contains a list/tree of your sys-
tem components and their connections. Notice the three coloured buses. The
two blue are LMBs connecting the processor and the memory controllers, one
is used for instruction fetch (ilmb) and the other is used for data read/write
(dlmb). The red lines are not buses, but illustrate the connection between the
memory controller and the memory block(s). Finally the green line is an AXI
bus, connecting the processor to the peripherals. All peripherals are memory
mapped, thus they can be addressed through read/write to memory addresses
(see the Addresses tab at the top of this view). You may connect/disconnect
components to/from a bus by clicking on the circles. Double click on a compo-
nent to get a dialog window in which you can change its parameters, view its
VHDL code or even the documentation as PDF.

Feel free to explore more of the XPS environment at your leisure.

2.3 Building your hardware

You are now ready to create that part of the FPGA configuration that de-
scribes your hardware architecture. This synthesis step is complex, thus time-
consuming the first time (depending on your machine performance and the
design constraints, this might take 10 minutes or more). Subsequent changes
to the architecture may require only partial rebuilds, so they might take less
time, depending on the extent of the changes (changing one IP parameters,
reconnecting one signal are minor changes).

4

Assuming your hardware is fixed for now (you may always return to XPS
and change things, which will be detected in the rest of the design flow), you are
ready to move on to writing the software. For this, Xilinx provides the SDK,
which is an Eclipse based environment. All you need to do is select the Export
Design icon in the Navigator menu, and click on the Export & Launch SDK
button in the pop-up. This will carry out the hardware synthesis (may take some
time, as mentioned before) and start the Eclipse Xilinx SDK environment.

3 Creating the Software

The Xilinx Software Development Kit (XSDK), which is based on Eclipse,
may be either invoked from the XPS, or found alongside XPS in start→ all
programs→ Xilinx Design Tools→ ISE Design Suite 14.x→ EDK→
Xilinx Software Development Kit.

note At launch, XSDK prompts with a request for a workspace to use (as in
standard Eclipse). It is recommended you select a brand new workspace
for each hardware design, since using a pre-existing workspace might over-
write certain essential parts of the workspace. It is up to you to select a
suitable path here.

In XSDK there are in principle three kinds of projects:

hardware platform specification describes the hardware platform, and it is
automatically created when exporting a project from XPS and is updated
whenever the hardware architecture is changed.

board support package describes the software environment set-up for the
specific hardware architecture, including the drivers, libraries and oper-
ating system. Any number of such projects may be created for a given
hardware.

application describes an specific program that can run on a specific hardware
using a specific board support package (bsp). When creating a new ap-
plication one must select the hardware platform to run the application
as well as a bsp. Alternatively, a new bsp may be created automatically
when you create a new application.

Once the XSDK starts, the hardware platform project is already available.
Let us now create an simple application (and, of course, a required bsp). In the
XSDK menu select File→ New → Other Select then Xilinx → Xilinx
C Project from the type of projects.

In the following pop-up, you will have to give the name, select a template
application and a bsp for your new application, along to the processor to run
it on (if several are available). Select for instance Hello World as a template,
standalone (no OS support), and a new bsp (you may reuse this for other
projects), and keep the defaults for any other parameters. Once you close the
pop-up, automatic generation starts, which will take a couple of moments.

Two new projects should now appear in your Project Explorer, one for
the application, and one for the bsp. Feel free to inspect the settings for both.
Note that the framework is based on Eclipse, so the way of compiling projects,
examining its output and the source files should already be familiar to you.

5

4 Running the System on the FPGA

At this point both the hardware and the software specifications of your system
are ready. This system will be emulated on the Nexys-3 board, which contains
a Spartan-6 FPGA.

note You should be aware that both what we refer to as hardware and soft-
ware are in this case implemented as one FPGA configuration (ultimately
memory contents). The FPGA thus acts as your hardware, which runs
your software. A true silicon flow, which produces an ASIC from your
hardware, would take a far longer turn around time, but should produce
a much faster and smaller system.

4.1 Connecting through the USB-UART

When you run your system it is nice to see some output, i.e. the result of
print(). Nexys-3 uses a USB based serial communication, a USB-UART. The
hardware we created earlier maps the Nexys-3 physical pins that control the
UART to signals used inside our system, by the axi uartlite core. The bsp
created earlier maps the C stdin and stdout to the axi uartlite registers,
and also uses the right libraries for communicating via the serial. Finally the
application we created outputs Hello World via a print() instruction. In brief,
all is set for our board to output something through the USB-UART. We now
only have to display these messages.

For this reason, one can use any terminal program outside the XSDK, or
use the XSDK built in terminal capability, via Window→ Show View→
Terminal. Push the connect button (right toolbar on the Terminal tab) and
select Serial in the connection type, and make sure the following parameters
are set for the serial (the port may vary however):

Port COM3 (may differ on your machine!)
Bits per second 9600
Data bits 8
Stop bits 1
Parity None
Flow control None

This must in fact be the same as the configuration the one used for the axi uartlite

core in the hardware architecture. You should now be able to see any output
produced through the USB-UART cable.

4.2 Configuring the FPGA

Now you are about to run the system and you need a FPGA board, connect it
(you need two micro-USB cables, one for configuring and powering the board
and one for the USB-UART) and switch on the power.

Although there are number of ways to download the configuration on the
FPGA, the simplest way to do this is through the XSDK, via Xilinx Tools→
Program FPGA. In the Program FPGA pop-up, you have to specify three
parameters.

6

Bitstream is the hardware generated by the XPS. (this should be already set
properly)

BMM File is the memory map of the on-chip RAM. This file basically de-
scribes how the RAM blocks are organized into a contiguous memory
space. (this should also be set properly already)

Software Configuration allows you to specify which executable is executed
on which processor. The bootloop is basically an empty endless loop.
Here you should choose the .elf file of your application.

Pushing Program will download the configuration (hardware and software) onto
the FPGA (see note if this fails), and directly start executing your program
(the .elf you specified earlier). You can check the output of your program
in the Terminal tab, lower part of the window. If you used the Hello World
template, you should directly see the Hello World message in this window.

note If configuring the FPGA through the XSDK fails, there is an alternative
way to download the configuration onto the FPGA. This uses the tools
provided by Digilent, in particular Adept. Find and run Adept via the
Windows start menu. The tool should automatically identify your board
as Nexys-3 and display in its main window the FPGA chip located on the
board. You can now assign a configuration for the FPGA, located in your
XSDK project directory, hardware platform folder, called download.bit

by using the Browse button. Note that you might run into another bit file

in the same directory, system.bit. This is not a complete configuration, since

it does not contain the software. In order to obtain the download.bit file, you

may need to attempt to configure the board via the XSDK first, which will build

the download.bit automatically. You should now be able to configure the
FPGA via the Program button.

Now push the B8 button on the Nexys-3 board (the middle button, out of
the five buttons group). This is assigned as reset button, which will cause the
program to run again, producing yet another Hello World.

Congratulations, you have just built and ran your first (?) Nexys-3
system!

5 That was easy, what’s next?

You should have by now created and run your first system. Use the remaining
time in the first lab to explore the XPS program. The following labs will contain
much more work and you will not be able to finish unless you have prepared
ahead, i.e. created the system. In the next lab you will need a system consisting
of a MicroBlaze, a UART (axi uartlite) and a timer (axi timer). If you have
time you can start to create this system. Read the documentation of the timer.
To find the documentation, right click on it in the IP Catalog tab in the left
XPS frame.

7

6 Power and energy consumption

Once you have your system, you can estimate its power and energy consumption.
In embedded systems (and not only) power and energy are very important since
they determine the cooling, power supply and battery lifetime.

To get a rough estimate of your system’s power (meaning the power con-
sumption of the FPGA emulating it) you can use the XPower Analyzer tool
that comes with Xilinx ISE, found in start→ all programs→ Xilinx Design
Tools→ ISE Design Suite 14.x→ ISE Design Tools→ 64-bit Tools→
XPower Analyzer. Once XPower starts, choose File→ Open Design to
specify the design you want to examine. In the dialog that appears, the design
file is necessary, which is the system.ncd file located in the your XPS project
directory, in implementation subdirectory. This file is the result of hardware
synthesis, so it will only be present if you went through the synthesis step al-
ready. You should at least specify the Physical Constraints File, system.pcf,
present in the same directory.

note To make the analysis more accurate, more of the optional files should be
provided.

Choose OK to start the analysis, and pay attention to the output comments.
Also inspect the tables produced in the main window, since these gather the
power figures for your design.

Once you have the total power for the design, you may multiply this with
the time it takes to execute any of your applications (you will need to use a
timer core and instrument the program to record the number of clock cycles
used) in order to obtain the energy consumption for that program.

7 Dual-processor systems

Let’s continue by creating a dual-processor system, that will be needed in lab
3. You may either extend the uni-processor system you are currently using, or
extend a dual-processor system created with the wizard you used before (please
see the final section for that). The first solution focuses on using FIFOs to com-
municate between processors, while the second uses shared memory/mutexes
or mailboxes to the same end. These mechanisms do not exclude each other
and can be used at the same time, granted your system contains the hardware
support. Finally by the end of this section you should be able to have three
different ways of sending data between two processors:

1. FIFOs (Fast Simplex Link)

2. mutex/shared memory (Micron RAM)

3. mailbox

7.1 Starting from a single processor system

IN XPS, start by creating a system containing only one MicroBlaze and a UART
using the BSB wizard (or continue working with the system you just created).
To add a second processor you need to manually duplicate all components and

8

parameters in the processor/memory subsystem. Look at the block diagram to
see how the memory and CPU are connected (CPU↔ LMB↔ LMB controller↔
memory block). Notice that MicroBlaze uses a Harvard architecture, where data
and instructions have separate pathways. On the other hand, the memory blocks
are dual ported, meaning that you can connect both the instruction and data
bus to the same memory block. To add IP components to your design, select
the IP from the IP Catalog tab in the left XPS frame, and double-click on it.
The newly added IP should appear in the System Assembly View tab, where
you can also rename the instance. Now add the following:

1x Processor→microblaze, which will automatically add and connect the
following:

1x Memory Block→bram block,

2x Memory Controllers→lmb bram if ctrl,

2x Buses→lmb v10,

2x Fast Simplex Link Buses→fsl v20.

The component associated with the new processor should match match the
way your first processor is connected. This means that the memory block should
be connected to both controllers. The two controllers should be connected each
to its own LMB. The processor should be connected to both LMBs (one for data,
one for instructions). The processor should also be connected to the common
AXI (or PLB) bus. You can check this in the System Assembly View tab.
Make sure that the Bus Interface tab is selected. All buses are shown to the left
(vertical lines). Simply click on a circle/box to connect/disconnect a component
instance to a bus. One can only connect ports on an instance, so click on the
+ to see the component ports first.

The Fast Simplex Link (FSL) is a uni-directional point-to-point connection
which will be used to communicate directly between the processors. To use
them, you must add FSL ports to the processors. To do this, double click on
the processor in System Assembly View, which will bring up the MicroBlaze
Configuration Wizard. In the pop-up, push the Advanced button, then lo-
cate and select the Buses tab. Here you can select the number of Stream Links,
where each link is a duplex link (which means, each needs two FSL buses).
Make sure the Stream Interface is set to FSL (not AXI). You may now close the
pop-up via OK. At this point, your processor should have two extra interfaces,
called SFSL0 and MFSL0 (standing for slave and master FSL), if you expand
its interfaces (click +) in the System Assembly View tab. You can now connect
these interfaces to the two FSL buses you added previously. Repeat the pro-
cedure for the second processor, in order to connect the two processors via the
FSL buses.

Your system should be looking something like in Figure 1 (obtained by
Project→ Generate Block Diagram Image).

You also need to connect the clock and reset signals for any IPs you have
added to your design. Switch from the Bus Interfaces to Ports tab in Sys-
tem Assembly View. First connect the reset signal of the newly added pro-
cessor to the proc sys reset 0::MB Reset signal (the same as the initial pro-
cessor). Connect the two FSLs you added to the proper clock and reset nets.
It suffices to link FSL Clk to clock generator 0::CLOCKOUT0 and SYS Rst to

9

Figure 1: Dual MicroBlaze system view

proc sys reset 0::Bus Struct Reset: select the Connected Port for the sig-
nal you want to connect and choose the appropriate signal from the drop list.
Connect the two LMB buses you added similarly to clock and reset. Note that
names may differ in your tool version, so the best hint is to examine how the
initial IPs are connected to signals (e.g. ilmb).

note Making sure all the new cores are connected to the clock and reset signals is
essential. Unconnected signals may not be easy to detect during synthesis,
and your system might not function properly, or at all.

Moving on to the memory layout of the newly added processor, in System
Assembly View, switch the tab from Ports to Addresses. This gives an overview
of the address map of the whole system, how each processor sees the peripherals
and memory. To make sure all the peripherals are mapped to some memory
address, you can generate this address map automatically, by clicking on the
small button located in the upper right corner, the same level with the Addresses
tab (if the mouse pointer hovers over it, it says Generate Addresses).

note Peripherals with unassigned addresses are usually bad news, since they
cannot be addressed from anywhere. If after the automatic generation of
addresses there are still such peripherals, it can only mean that they are
not connected to a bus (AXI or PLB).

note Note that the address spaces for each peripheral cover a certain memory
size. In most cases the same registers from a peripheral are mapped to
a number of addresses inside this space. For the ilmb/dlmb controllers,

10

however, these sizes directly control how much memory your program has
available to use. By changing these sizes, you can give more memory to
your software, up to a limit imposed by the resources available on the
FPGA.

note If you want to access the same peripheral from the two different processors,
you have to make sure it is connected somehow to both processors. You
may choose, for instance, to connect both processors to the same system
bus (AXI or PLB).

At this point the dual-processor hardware architecture should be set prop-
erly. You should now synthesise and export this to XSDK.

7.2 Dual-processor software

The XSDK flow for two processors looks similar to the flow for one processor,
so we will not detail it further here.

You might want to display messages from your second processor, which
means setting its stdin/stdout to the UART. If you already created your
application for the new processor, you will have a bsp associated with it. Right
click on the bsp project associated with the new processor and select Board
Support Package Settings, which will bring up a pop-up. Select the standalone
item from the list, and choose the right peripheral for the stdin/stdout. If
you cannot select your UART, it might mean that the processor does not have
physical access to it, e.g. the UART is not connected to the processor via a bus
(AXI or PLB).

The system should now be ready to run. You should download it, run it,
and check its output.

7.3 FSL communication

Once you have got both CPUs running (messages from both show up on the
terminal), it is time to do something useful. Let’s make them talk to each other,
through the FSL. Macros for reading and writing from/to the FSL are already
available in a header file that should be included in your sources mb interface.h

(in the include folder of the bsp project associated with your application). The
commonly used macros are putfsl(data, port) and getfsl(data, port).
Both are blocking, data is the data to read/write. For the read/get operation it
must be a variable, which then will be updated to contain the value read, port
is the FSL port number, starting from 0 (both for read and write). An example
application (assuming there are FSLs in both directions):

11

MicroBlaze 0: MicroBlaze 1:

#include <mb_interface.h>

#include <xutil.h>

int main(void){

int i = 0;

while(i<10){

putfsl(i, 0);

getfsl(i, 0);

xil_printf("pong %d\n\r", i);

}

}

#include <mb_interface.h>

#include <xutil.h>

int main(void){

int i;

while(1){

getfsl(i, 0);

xil_printf("ping %d\n\r", i++);

putfsl(i, 0);

}

}

7.4 Using the wizard to create a dual-processor system

When you created your single processor system using the wizard in XPS, at
one point you were asked to choose between single processor or dual-processor
systems. At the same step you may choose dual-processor system to create an
architecture that contains two processors, a few peripherals, including a mailbox,
a mutex and a Micron RAM cores. At the time of writing this tutorial, the AXI
flow for the dual-processor system did not work, but the PLB flow did, so you
might want to use the latter.

In order to see an example of using the mutex and mailbox from your soft-
ware, you can use the XSDK template applications, when adding a new project.
The Peripheral Tests template will detect mailboxes or mutexes connected to
your system bus and add code for these. Have a good look at this code, if you
intend to use mailboxes, or mutex/memory instead of FSLs in lab 3.

12

	The Sample Design
	Creating the System Architecture (Hardware)
	Start Xilinx Platform Studio (XPS)
	Create a new design
	Building your hardware

	Creating the Software
	Running the System on the FPGA
	Connecting through the USB-UART
	Configuring the FPGA

	That was easy, what's next?
	Power and energy consumption
	Dual-processor systems
	Starting from a single processor system
	Dual-processor software
	FSL communication
	Using the wizard to create a dual-processor system

