
Contents of Lecture 11

The C Library

Lecture 11 2023 1 / 39

The C Standard Library

There are 24 header files in C99 and 29 in C11.
We will go through some of the more important header files.

Lecture 11 2023 2 / 39

<assert.h>

To check that your assumptions hold during execution, you can do as
follows:

#include <assert.h>

void insert_first(list_t** list, void* data)
{

assert(*list != NULL);

/∗ . . . ∗/
}

It is useful during development and can be used for consistency checks.
Compiling with cc -DNDEBUG will disable the test. Therefore don’t do:

assert((fp = fopen(name, "r")) != NULL);

assert can be implemented as in Example 13.1.1
Lecture 11 2023 3 / 39

<assert.h>

If NDEBUG is not defined, the expression is evaluated, and if it is
nonzero, nothing happens.
If the expression is false, an error message is printed and the abort
function is called.
Suppose you want to check that a pointer is 8 bytes:

assert(sizeof(void*) == 8);

How can you check that during compilation?

Lecture 11 2023 4 / 39

Why is the following wrong?

#if sizeof(void*) != 8
#error the program assumes a pointer is 8 bytes.
#endif

Lecture 11 2023 5 / 39

Static assertion

Since the preprocessor knows nothing about the sizeof operator we
must do something else.
C11 has a new construct for it called _Static_assert, but we can
easily define a macro.
The idea is:

int array[sizeof(void*) == 8 ? 1 : -1];

If the expression is false, we would declare an array with −1 elements
which the compiler must complain about.
To avoid:

actually declaring an array and waste memory,
having to invent a different array name every time

... we can do as in Example 9.11.1, which instead of an array variable
declares an array typedef (wastes no memory) and uses token
concatenation (##) to make the line number part of the name.

Lecture 11 2023 6 / 39

<ctype.h>

<ctype.h> contains classification functions such as isdigit.
They take an int parameter and return a nonzero value to indicate
truth.
It is wrong to write:

if (isdigit(c) == 1)
/∗ . . . ∗/

Since the return value equally well could be 2 if c is a digit.

Lecture 11 2023 7 / 39

<fenv.h>

Defines macros for exceptions:

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

Defines macros for rounding modes:

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Lecture 11 2023 8 / 39

Exceptions

The exceptions can be set both by hardware and software.
When a math function detects an invalid input argument it should set
the FE_INVALID bit in the processor’s floating point status register.
There are functions for fetching a copy of the floating point status
register and for testing and clearing bits, and other operations — see
below.

Lecture 11 2023 9 / 39

<errno.h>

C has traditionally stored error codes in a variable called errno.
There are three standard errors:

EDOM
ERANGE
EILSEQ

The first two refer to math errors: an argument was not in the domain
of the function and the return value could not be represented in the
range of the return type.
The EILSEQ is used with an invalid multibyte character sequence.
Operating systems define others such as

ENOENT for ”No such file or directory”, and
EPERM for ”Permission denied”.

Lecture 11 2023 10 / 39

Using errno

We should set errno to zero before any call which might fail such as
opening or removing a file and some math functions.
For example:

#include <errno.h>
#include <stdio.h>

int main(void)
{

errno = 0;
if (remove("/") == -1)

perror("cannot remove \"/\"");
}

Lecture 11 2023 11 / 39

errno

errno behaves as if it was declared as a global variable int errno;

For multi-threaded programs this doesn’t work very well — due to
data-races.
Each thread gets its own copy of errno and this typically is
implemented as:

int* __get_errno_for_current_thread(void)
{

return ¤t_thread->errno;
}

#define errno (*__get_errno_for_current_thread())

Then we can use it as:

errno = 0;
/∗ . . . ∗/

Lecture 11 2023 12 / 39

errno and C11

With C11 we can instead declare errno using:

_Thread_local int errno;

This way each thread gets its own copy of errno.

Lecture 11 2023 13 / 39

Reporting errors from libraries

errno is intended for use by system libraries such as the API’s for
performing system calls and Pthread libraries.
System calls are special function calls provided by the operating
system which means Windows has one set of system calls and UNIX,
including MacOS X, Linux and AIX, have other sets.
To report errors from your own libraries, it is often a good idea to
define an enum with the different error codes.

Lecture 11 2023 14 / 39

<math.h>

Compile with -lm at the end of the command: gcc a.c -lm

Traditionally errno is used but C99 allows math exceptions to be
tested in a different way.
We need to check which way the library reports math errors using
math_errhandling:

errno = 0;
sqrt(-1);

if (math_errhandling & MATH_ERRNO)
/∗ . . . ∗/

if (math_errhandling & MATH_ERREXCEPT)
/∗ . . . ∗/

Lecture 11 2023 15 / 39

Math errors reported with errno

if (math_errhandling & MATH_ERRNO) {
if (errno == EDOM)

puts("EDOM");
}

Lecture 11 2023 16 / 39

Math errors reported as exceptions

if (math_errhandling & MATH_ERREXCEPT) {
except = fetestexcept(FE_ALL_EXCEPT);
if (except & FE_INVALID)

puts("FE_INVALID");
}

Lecture 11 2023 17 / 39

<inttypes.h>

Using <stdint.h> we can declare exact width integers such as
int32_t.
How should we print them?

int32_t a;

printf("a = %d\n", a); // not portable
printf("a = %ld\n", a); // not portable

What should we do?

Lecture 11 2023 18 / 39

<inttypes.h>

This header file declares macros which are strings that can be used.
For example:

#include <inttypes.h>

int32_t a;

printf("a = %" PRId32 " \n", a);

<inttypes.h> includes <stdint.h>.
Stricly speaking this is also not portable since it is implementation
defined whether there is an int32_t but if there is, this is how to
print it.
For instance a DSP-processor with 24-bit int may not have int32_t.

Lecture 11 2023 19 / 39

<setjmp.h>

To jump to a label L we use goto L;

In C we can also jump from one function to another.
Consider:

void g(void) { /∗ . . . ∗/ }
void f(void) { g(); }
int main(void)
{

/∗ . . . ∗/
f();

}

Usually g returns to f which returns to main.
If we wish we can return from g directly to main.
Instead of return we use longjmp.
longjmp has an even worse reputation than goto and is rarely useful.

Lecture 11 2023 20 / 39

What is the context of an executing thread?

Program counter or PC
Registers
To make a jump to a function f , that function must already have an
allocated stack frame and its program counter and registers must have
been saved.
Thus e.g. main cannot jump into the middle of any function — a call
to the jumped-to function must already be active such as the call to f
above.
There is a type jmp_buf in which the PC and registers are saved.
A jump is performed by loading all registers and finally the PC from
such a jmp_buf variable.

Lecture 11 2023 21 / 39

Non-local jumps with setjmp and longjmp

To make a non-local jump, two operations are needed:
Initialize the jmp_buf variable — using setjmp.
Calling the function longjmp with the jmp_buf variable as one of the
parameters.
The call to longjmp will result in another return from setjmp!
To distinguish the initialization call of setjmp and the returning jump,
setjmp returns zero when called to initialize a jmp_buf variable and
the second paremeter to longjmp otherwise.

Lecture 11 2023 22 / 39

Typical usage

#include <setjmp.h>

jmp_buf buf;

int main(void)
{

switch (setjmp(buf)) {
case 0: /∗ i n i t i a l i z a t i o n . ∗/ break;
case 1: /∗ from longjmp . ∗/ break;
}

}

void g(void)
{

if (must_stop())
longjmp(buf, 1);

}

Lecture 11 2023 23 / 39

Remarks

Almost always non-local jumps are not needed.
In a chess program which has found a winning move it can be
appropriate to terminate a deep recursive search using longjmp.
Functions with non-local jumps are very annoying to optimizing
compilers and often result in slower code.

Lecture 11 2023 24 / 39

<signal.h>

A signal is a way of notifying a running program that something has
happened.
Signal Example cause Default effect
SIGABRT abort(); Terminate the process
SIGFPE Implementation defined Terminate the process
SIGILL Illegal instruction Terminate the process
SIGINT Ctrl-C Terminate the process
SIGSEGV Invalid address Terminate the process
SIGTERM kill <pid> Terminate the process

Lecture 11 2023 25 / 39

Some UNIX-specific signals

Signal Cause Default effect
SIGSTOP Ctrl-Z Stop the process
SIGSTOP kill -SIGSTOP <pid> Stop the process
SIGCONT kill -SIGCONT <pid> Resume the process
SIGBUS eg non-alignad memory access Terminate the process
SIGKILL kill -SIGKILL <pid> Terminate the process
SIGKILL kill -9 <pid> Terminate the process
SIGKILL pkill -9 -u stilid Terminate stilid’s processes

kill -l List all signals

Lecture 11 2023 26 / 39

Common use

To get informed about a signal, sent from the operating system, we
must register a so called signal handler.
A signal handler is simply a function that the operating system runs
for us.
If we have not registered a signal handler before a signal is received
our program usually is terminated, i.e. that is the default action.
To register a signal handler catch_ctrl_c for SIGINT we can do:

#include <signal.h>

void catch_ctrl_c(int s) { /∗ . . . ∗/ }

int main(void)
{

signal(SIGINT, catch_ctrl_c); for (;;);
}

Lecture 11 2023 27 / 39

The signal function

The signal function tells the operating system which function to call
instead of terminating our program.
The function signal returns the previously registered function for a
particular signal number.
The declaration of the signal is perhaps confusing to read:

void (*signal(int signum, void (*func)(int)))(int);

The two parameters to signal are signum and func.
The * before signal is there due to the return value is a pointer (to a
function).
Since the same function can be signal handler for different signals, the
int parameter of the signal handler specifies which signal occurred.

Lecture 11 2023 28 / 39

Delivering a signal

When an event happens which triggers a signal, the operating system
blocks additional instances of the same signal to avoid having the
signal handler being invoked multiple times for the same signal.
This blocking is removed when the signal handler returns to the
operating system.
After that, the operating system will let the program resume execution.
What happens if the signal handler instead of returning makes a
longjmp?
The signal will remain blocked since the operating system still thinks
the signal handler has not returned.

Lecture 11 2023 29 / 39

<stdlib.h>

To convert a number in string to an integer, the function strtol is
useful.
It takes three paramets:

A pointer to a string: char* s
An optional pointer to a pointer to a string: char** end
The base, 2-36 — or zero and then the base is inferred from the string.

The function sets *end to point to the first character after the
number — unless end is a null pointer.
For example:

int a;
char* end;

a = strtol("119", &end, 2);

a is set to 3 and end to point to the 9.

Lecture 11 2023 30 / 39

<string.h>

To split a string into parts, called tokens, the function strtok can be
used.
It is used in two phases:

First two parameters are provided:

char* s;
char a[] = "a string. hi: there";
char* sep = " :.";

s = strtok(a, sep);

The first parameter must be modifiable.
The second parameter contains a set of characters which are used to
separate tokens.

If the first parameter is null, search continues in the previously used
string.

Lecture 11 2023 31 / 39

strtok example

For example:

char* s;
char a[] = "a string. hi: there";
char* sep = " :.";

s = strtok(a, sep);
while (s != NULL) {

printf("%s ", s);
s = strtok(NULL, sep);

}

The output will be: a string hi there

The returned string assigned to s is null-terminated!
That means strtok modifies the first non-null parameter which
therefore must be modifiable.
Using char* s= "hello there"; may result in a read-only string!

Lecture 11 2023 32 / 39

Sorting array of int using qsort

an array (i.e. a pointer to the first element)
number of elements
size of each element
a comparison function

int compare(const void* ap, const void* bp)
{

const int* a = ap;
const int* b = bp;

// don ’ t use : return ∗a − ∗b ;

if (*a < *b)
return -1;

else if (*a == *b)
return 0;

else
return 1;

}

Lecture 11 2023 33 / 39

Buffer overflows

A buffer overflow means array index out-of-bounds errors.
Checking that an array index is within the array bounds is not done in
C, as in Java.
The checking is only useful for programs with bugs.
To avoid such errors, the following simple rule is sufficient:

Don’t trust untrusted data.
In other words, make a sanity check for all input, and use range
checking library functions.
When there is a risk for overflow: check it explicitly.
For C: make the calculation (how depends on the type).
Java does also not report errors on overflow (and cannot check it for
floating point values).

Lecture 11 2023 34 / 39

An example: sprintf and snprintf

Both functions behave as printf but put their output in a buffer
pointed to by the first parameter.
The output is null terminated.
sprintf assumes the buffer is sufficiently large.
The second parameter of snprint specifies the buffer size.

Lecture 11 2023 35 / 39

Never use gets

The function gets reads the next line of input from stdin and copies
it to a buffer supplied to gets.
No length check is done. Don’t use gets. It may disappear from C.
Use fgets instead which takes a buffer, a size, and a FILE pointer as
parameters.

Lecture 11 2023 36 / 39

Another example: strcpy and strncpy

strcpy copies the string pointed to by the second parameter into
memory pointed to by the first parameter upto and including the
terminating null byte.
strncpy does the same but copies at most n bytes.
Warning: strncpy may skip the null byte!
Similar situation for strcat which appends a string.
Use strncat instead.

Lecture 11 2023 37 / 39

C vs C++

I was requested to answer the question of why we should program in C
when there is a language called C++.
C compilers are reliable. The complexity of C++ make me think that
not even a C++ front-end will ever be bug-free.
C is nicer than Fortran — the other high-performance language.
It is possible to make C code inefficient using a bad algorithm or for
instance by not calling functions directly but always through a pointer
to a struct which contains pointers to functions. This confuses
optimizing compilers.
Virtual functions in C++ behave like that so the main reason for using
C++ over C makes your program slower.
If you recompile a 10-year old C program, normally it just works.
If you do that with C++ usually it does not compile.

Lecture 11 2023 38 / 39

More deep problems with C++, from Google

C++ is one of the main development languages used by many of Google’s
open-source projects. As every C++ programmer knows, the language has
many powerful features, but this power brings with it complexity, which in
turn can make code more bug-prone and harder to read and maintain.
The goal of this guide is to manage this complexity by describing in detail
the dos and don’ts of writing C++ code . These rules exist to keep the
code base manageable while still allowing coders to use C++ language
features productively.

Lecture 11 2023 39 / 39

