
Contents of Lecture 10

The C Preprocessor
Statements
Portable C

Lecture 10 2023 1 / 33

Preprocessing directives

Predefined macros

Macro replacement

Conditional inclusion

Source file inclusion

Line control

Error directive

Pragma directive

Null directive

Predefined macro names

Pragma operator

Lecture 10 2023 2 / 33

Predefined macros: standard macros

__FILE__ expands to the source file name.
__LINE__ expands to the current line number.
__DATE__ expands to the date of translation.
__TIME__ expands to the time of translation.
__STDC__ expands to 1 if the implementation is conforming.
__STDC_HOSTED__ expands to 1 if the implementation is
hosted, and to 0 if it is free-standing.
__STDC_VERSION__ expands to 199901L.

Lecture 10 2023 3 / 33

Predefined macros: implementation-defined

__STDC_IEC_559__ expands to 1 if IEC 60559/IEEE 754 is
supported (except complex arithmetic).
__STDC_IEC_559_COMPLEX__ expands to 1 if complex
arithmetic in IEC 60559/IEEE 754 is supported.
__STDC_ISO_10646__ expands to an integer yyyymmL to
indicate which values of wchar_t are supported.
If a predefined macro is undefined then behavior is undefined.

Lecture 10 2023 4 / 33

Defining macros

#define obj (a) a+1
#define bad(a) a+1
#define good(a) (a+1)

obj(3) => (a) a+1(3)
bad(3)*10 => 3+1*10
good(3)*10 => (3+1)*10
(good)(3)*10 => (good)(3)*10

No whitespace between macro name and left parenthesis in
function-like macro.
A fencing-like macro not followed by left parenthesis is not expanded.

Lecture 10 2023 5 / 33

Conditional inclusion

#define DEBUG

#ifdef DEBUG
printf("here we go: %s %d\n", __FILE__, __LINE__);

#endif

#ifndef DEBUG
#endif

#if expr1
#elif expr2
#elif expr3
#else
#endif

Lecture 10 2023 6 / 33

More directives

#define DEBUG 1
#define DEBUG 0 // inva l id : cannot redef ine a macro
#undef DEBUG
#define DEBUG 0 // OK. undefined f i r s t

#line 124 "a.scala" // w i l l set __LINE__ and __FILE__

#ifndef __STDC__
#error this will not with a pre-ANSI C compiler!
#endif

#pragma directive from user to compiler
_Pragma("directive from user to compiler") // equivalent

Lecture 10 2023 7 / 33

operator ”stringizer”

Operator # must precede a macro parameter and it expands to a
string.
#define xstr(a) #a
#define str(b) xstr(b)
#define c 12

xstr(c) => "c"
str(c) => "12"

#define fatal(expr) { \
fprintf(stderr, "%s line %d in \"%s\": fatal error %s = %d\n", \
__FILE__, __LINE__, __func__, #expr, expr); exit(1); }

int x = 2;
fatal(x); => prog-015.c line 15 in "main": fatal error x = 2

Lecture 10 2023 8 / 33

operator

Operator ## concatenates the tokens to the left and right.

#define name(id, type) id##type

name(x,int) => xint

#define a x ## y
#define xy 12
int b = a; // i n i t i a l i z e s b to 12;

Lecture 10 2023 9 / 33

__VA_ARGS__

Sometimes it is convenient to a have a variable number of arguments
to a function-like macro, eg when using printf.
Without __VA_ARGS__, the number of arguments must match
the number of parameters.

Lecture 10 2023 10 / 33

Variable number of arguments in macros

#ifdef DEBUG
#define pr(...) fprintf(stderr, __VA_ARGS__);
#else
#define pr(...) /∗ do nothing . ∗/
#endif
int x = 1, y = 3;
pr("x = %d, y = %d\n", x, y); => x = 1, y = 3

Lecture 10 2023 11 / 33

Macros can improve performance

Since macros are expanded in the called function they eliminate the
overhead of calling functions.
Macros can cause problems however:

#define square(a) a*a

x = 100 / square(10) => 100 / 10 * 10

Use parentheses:

#define square(a) ((a)*(a))

y = square(cos(x)) // va l id but slow
z = square(++y) // wrong

Now the cos function is called twice!
Modifying y twice is wrong.

Lecture 10 2023 12 / 33

Macros with statements

Suppose we write want to swap the values of two variables using a
macro:

#define SWAP(a, b) tmp = a; a = b; b = tmp;

if (a < b)
SWAP(a, b);

What happens?
How about:

#define SWAP(a, b) { int tmp = a; a = b; b = tmp; }

if (a < b)
SWAP(a, b);

else
printf("syntax error!\n");

A compound statement cannot be followed by a semicolon.
Lecture 10 2023 13 / 33

Using do-while loops

We can do as follows:

#define SWAP(a, b) do { int tmp = a; a = b; b = tmp; } while (0)

This macro will solve both of the previous problems.

Lecture 10 2023 14 / 33

An alternative to macros: inline functions

Inlining a function means copying the statements of a function into
the calling function instead of doing the call.
This can be done automatically by good compilers and should not be
done by programmers — in my opinion at least.
With C99 the keyword inline was introduced to C which can be used
to give the compiler a hint that it might be a good idea to inline a
function.
Since good compilers can inline parts of a function automatically —
and even copy rarely used parts of a function to some other place in
memory it is much better to let the compiler take care of this.
Use inline only if you use a poor compiler.

Lecture 10 2023 15 / 33

Linkage and inline functions

Recall: external linkage means an identifier is accessible from other
files.
A function with internal linkage, i.e. declared with static can always
be inlined but functions with external linkage have restrictions:

An inline function with external linkage may not define modifiable data
with static storage duration.
An inline function with external linkage may not reference any identifier
with internal linkage.

What do these mean and why do we need these restrictions?

Lecture 10 2023 16 / 33

First restriction

extern inline int f(void)
{

static int x;
static const int a[] = { 1, 2, 3 };

return ++x;
}

Restriction: an inline function with external linkage is not allowed to
declare modifiable data with static storage duration.
Since copies of f inlined in different files will use different instances
of x, this is forbidden.
The constant array is OK.

Lecture 10 2023 17 / 33

Second restriction

static int g(void)
{

return 1;
}

extern inline int f(void)
{

return g();
}

Restriction: an inline function with external linkage is not allowed to
access any identifier with internal linkage.
When f is inlined in some file, it will use the available function g but
then different files can have different functions g.

Lecture 10 2023 18 / 33

A warning

The gcc compiler supported the inline function specifier before it
was added to the C standard.
Unfortunately, gcc uses slightly non-standard semantics for inline.
A simple rule which works both in ISO C and with gcc is to declare
inline functions in header files such as:

#ifndef max_h
#define max_h

static inline int max(int a, int b)
{

return a >= b ? a : b;
}

#endif

Read Section 9.5.1 for details about the incompatibility — I will not
ask about it in the exam, however.

Lecture 10 2023 19 / 33

Chapter 11: Statements

Labeled statements
Compound statement
Expression and null statements
Selection statements
Iteration statements
Jump statements

Lecture 10 2023 20 / 33

Labeled statements

Labels — i.e. targets of goto statements.
Integer constant case statements in a switch.
The default statement used if no case matches.
void f(void)
{

for (...) {
for (...) {

for (...) {
if (...)

goto fail;
}

}
}

return;

fail: /∗ clean up d i sas te r . ∗/ ;

}
Lecture 10 2023 21 / 33

Compound statement

A compound statement, a block, can contain a sequence of
statements and declarations.
For instance:

int main(void)
{

int a;
a = 1;
int b;
b = 2;

}

Mixing declarations and statements comes from C++ where some
objects declared as local variables need this.
In C there is no need to do this.

Lecture 10 2023 22 / 33

First declarations and then statements

The following is cleaner in my opinion.

int main(void)
{

int a;
int b;

a = 1;
b = 2;

}

Lecture 10 2023 23 / 33

Expression and null statements

Most statements are expression statements, including assignments.
A null statement does nothing and consists only of a semicolon.
Null statements are used at end of blocks to avoid syntax errors:

int main(void)
{

/∗ . . . ∗/
if (p == NULL)

goto fail;

/∗ . . . ∗/

fail:
;

}

Lecture 10 2023 24 / 33

Selection statements: if and switch

The controlling expression in a switch must be an integer.
If there are initializations in the compound block of a switch they are
not executed:

switch (a) {
int b = 10;

case 1:
printf("a is one\n");
a = b; // inva l id . b not defined .

// f a l l s through to case 2.

case 2: printf("a is two\n");
break;

default:
printf("hello from default\n");

}
Lecture 10 2023 25 / 33

Iteration statements

Three loops: for, while, and do-while.
A for-loop can have a declaration statement:

for (int i = 0; i < N; ++i)
f(i);

This was partly introduced to C due to C++ already had it and partly
due to a false assumption that optimizing compilers would be helped
by having the declaration close to the for-loop, which is nonsense.

Lecture 10 2023 26 / 33

New in C11: exact rules for optimizing away loops

Consider the following loop:

int i;
unsigned b = 0;

for (i = 1; i; b += 1) // OK to remove th i s
;

abort();

for (;;) ; // must remain in C11
while (1) ; // must remain in C11

Previously there were no rules regarding whether compilers are allowed
to optimize away loops which never terminate and do not affect
output by themselves.
C11 says compilers may optimize away loops if they do not access
atomic or volatile objects, perform I/O, or have a constant nonzero
termination condition, e.g. while (1) { } must stay.

Lecture 10 2023 27 / 33

Writing Portable C Code

Avoid undefined behavior.
Write code with implementation-defined or unspecified behavior only
when doing so cannot affect the observable behavior of your program.
Avoid platform-specific system calls — stick to the Standard C library
if possible.
Do not exceed minimum compiler limits, eg number of parameters etc
(this is mostly for machine-generated C).
Appendix J of the C Standard has information on portability issues.
Most of them are concerned with the Standard C library.

Lecture 10 2023 28 / 33

Examples of Unspecified Behavior 1(2)

Whether string literals share memory.
The order in which the operands of eg add are evaluated (discussed
before).
Whether f() or g() is called first in: fun(f(), g()).
Whether errno is a macro or identifier with external linkage.
The order in which # and ## are evaluated during macro expansion.
Which of two elements which compare equal is matched by bsearch.
The order of two elements which compare equal when sorted by qsort
(no surprise).

Lecture 10 2023 29 / 33

Examples of Unspecified Behavior 2(2)

The resulting value at an overflow when converting a floating-point
value to an integer.
Whether the conversion of a non-integer floating point value to an
integer raises the ”inexact” exception.
The order of side-effects during initialization, eg it is not specified
whether f() or g() will be called first below:

int main()
{

int a[] = { f(), g() };
}

Lecture 10 2023 30 / 33

Examples of Undefined Behavior 1(2)

A ”shall’ or ”shall not” requirement which appears outside a constraint
is violated.
A file ends in a comment /* comment.
An identifier is first declared as extern and later as static.
An invalid pointer is used:

int* fun()
{

int a;

return &a; // This pointer must not be used .
}

Lecture 10 2023 31 / 33

Examples of Undefined Behavior 2(2)

Conversion to or from an integer which cannot be represented (also for
conversion from floating-point to an unsigned).
When a program attempts to modify a string literal:

char* s = "hello, world";
s[0] = ’H’; // may crash .

When an object is modified multiple times between two sequence
points:

i = ++i + i++;

/ or % with the second operand being zero.

Lecture 10 2023 32 / 33

Examples of Implementation-Defined Behavior

The number of bits in a char.
Whether a char is signed or unsigned.
How integer numbers are represented: not necessarily two’s
complement (but most of the world assumes that so you should too).
Where to search for #include <header.h> files. In UNIX, use the
switch -Idir to look in the directory dir.
Endianness. Check on which format the data is stored when reading
binary data using fread.

Lecture 10 2023 33 / 33

