
Contents Lecture 8

Cache memories

Lecture 9 2023 1 / 24

Basic Rule

There is a trade-off between speed and size of memories.
A memory component is either fast and small or big and slow (or a
compromise somewhere in between).
Programmers of course want fast and big memories.
It should take one clock cycle to fetch from memory and it should be
many gigabytes.
Reading from memory can take hundreds of clock cycles.

Lecture 9 2023 2 / 24

Two Observations

When solving a computer engineering research problem we should
always first try to make observations about how the system behaves
and then exploit that knowledge.
A first observation about memory usage is that programs usually
access memory somewhat regularly, which is called locality.
Temporal locality means that if a program has accessed a particular
location A in memory, it is likely it will access A again soon.
Spatial locality means that if a program has accessed a word at
address A in memory, it is likely it will soon access the word at address
A+ 1.

Lecture 9 2023 3 / 24

Examples of Temporal Locality

The instructions in a loop are accessed next iteration as well.
The loop index variable is usually accessed frequently.
The stack space is often accessed again when a new function is called
(since that space is reused).
An object is typically accessed for a while and then the program is
done with it.

Lecture 9 2023 4 / 24

Examples of Spatial Locality

The instructions are accessed one after the other — until there is a
branch.
Elements of an array are often accessed one after the other.
Often several variables in an object is accessed and if these are put
close together (by the programmer) then there will be spatial locality.

Lecture 9 2023 5 / 24

Exploiting Temporal Locality

What is needed is a small memory on the same chip as the processor.
If we describe our hardware in C, then extending our machine.c could
look like:

typedef struct {
int reg[32];
int pc;
struct {

bool valid;
int data;
int address;

} cache_array[8];
} cpu_t;

Lecture 9 2023 6 / 24

Data and Address

We have now a cache which can store eight popular words.
The cache array contains eight pairs of data and address.
There is also a boolean called valid which tells us whether the data
and address are valid for that row.
Suppose the compiler has decided that a global variable X should be
put at the address 293, or 0x125, or 0001 0010 0101.

Lecture 9 2023 7 / 24

Using our Cache

When the program (or CPU) wants to read variable X, it should check
whether any of the eight rows has valid = true and address = 293
If the CPU found one such row (or, let’s call it line), then the CPU
can take the data from that line and avoid waiting for the slow
memory! Great!
We must call this event something: a cache hit
It can save us 100 clock cycles.

Lecture 9 2023 8 / 24

Load Instruction

In hardware all iterations are executed concurrently!!
The openmp directive is here to make you alert on that this is not a
sequential loop.

case LD: found = false;
address = source1 + constant;
#pragma omp parallel for
for (i = 0; i < 8; i++) {

if (cache_array[i].valid &&
cache_array[i].address == address) {
data = cache_array[i].data;
found = true;
break;

}
}

Lecture 9 2023 9 / 24

Cache Replacement

We need to select one line.
If there is one line with valid = false then we select that one.
Otherwise, for now, we take a random line (row).
If the row we selected had valid data, we need to copy the old data
contents to memory (otherwise it’s lost).
Then we read our data from memory.
Then we write our data into the selected row, set the address to our
address and set valid to true.

Lecture 9 2023 10 / 24

Load Continued

if (!found) {
i = select_row();

if (cache_array[i].valid) // save old data to memory
memory[cache_array[i].address] = cache_array[i].data;

// read our data from memory
data = memory[address];

// save our data in the cache
cache_array[i].data = data;
cache_array[i].address = address;
cache_array[i].valid = true;

}

Lecture 9 2023 11 / 24

Similar for a Store

case ST:
found = false;
address = source2 + constant;
data = source1;
#pragma omp parallel for
for (i = 0; i < 8; i++) {

if (cache_array[i].valid &&
cache_array[i].address == address) {
cache_array[i].data = data;
found = true;
break;

}
}
if (found)

break;

Lecture 9 2023 12 / 24

Store Continued

i = select_row();
if (cache_array[i].valid)

memory[cache_array[i].address] = cache_array[i].data;
cache_array[i].data = data;
cache_array[i].address = address;
cache_array[i].valid = true;

Next time we want to read or write that variable it is likely that it will
be found in the cache.

Lecture 9 2023 13 / 24

The Loop — isn’t it slow?

No, it doesn’t exist!
It only exists in the software model of the hardware.
Recall: in hardware the loop is run in parallel.
In our case, there are eight so called comparators which compare the
address requested with the address in its row and says ”here!” if the
addresses are equal and the valid bit is true.

Lecture 9 2023 14 / 24

A look at our Cache

Our cache does not exploit spatial locality, yet.
Instructions may also be put in the cache.
Hit rate is the fraction of hits in the cache.
Let us test it on the factorial program.

rows reads read hits writes write hits hit rate
8 77 21 11 0 23.9 %

16 77 36 11 0 40.9 %
32 77 50 11 0 56.8 %
64 77 50 11 0 56.8 %

128 77 50 11 0 56.8 %

Lecture 9 2023 15 / 24

What can have happened?

All writes always miss — the factorial program writes to new places on
the stack.
The reads benefit from a larger cache since then what fac(5) and
fac(4) saved on the stack will remain in the cache when they later
read the saved parameter and return values.
The 27 read misses are due to instruction which are fetched for the
first time.

Lecture 9 2023 16 / 24

Some Comments

Our cache is very small, only a half KB. Usually the cache closest to
the processor, called the L1 cache is 32 KB or 64 KB.
Having 128 comparators might be feasible but hundreds of them is too
much. That is a problem which we must address.
It is much better to read and write multiple words from/to memory
rather than only one at a time. This we will also address.

Lecture 9 2023 17 / 24

Cache Associativity

In our cache, a word can be put in any row in the cache.
That means every row must be checked to see if the address matches.
Our cache is called a fully-associative cache. These are expensive.
If there is a function (in hardware) which maps an address to a
particular row, then we only need one comparator, since there is only
one row to look in. That is called a direct-mapped cache.
In a direct-mapped cache we can use the least significant bits of the
address as the function.
Why should we not use the most significant bits as the function
instead???

Lecture 9 2023 18 / 24

Direct Mapped Cache

The purpose is to avoid so many comparators.
In the C code the loop will disappear.
If the number of rows in the cache is a power of two we can do as
follows instead of having a loop:

i = address & (CACHE_ROWS - 1);
if (cache_array[i].valid

&& cache_array[i].address == address)
data = cache_array[i].data;

// etc as in LD: above

Lecture 9 2023 19 / 24

N-way Associative Cache

In direct mapped cache, we can be unlucky and having two frequently
used items which are mapped to the same row in the cache which will
result in many cache misses when they replace each other.
A compromise is a so called N-way associative cache.
Now we group the cache rows into sets, where each set has N rows.
The number of sets, CACHE_SETS = CACHE_ROWS / N.
An address is now mapped to a set and within its set, the address can
be put in any of the N rows.
N comparators are needed now, and typical values of N is 2, 4 or 8.

Lecture 9 2023 20 / 24

Accessing Data in an N-way Associative Cache

i = address & (CACHE_SETS - 1);
for (j = 0; j < N; j++) {

if (cache_array[i][j].valid
&& cache_array[i][j].address == address) {
data = cache_array[i][j].data;
found = true;
break;

}
}

In a fully associative cache, CACHE_SETS = 1.
In a direct-mapped cache, N = 1.

Lecture 9 2023 21 / 24

Cache Block Size

So far we have only transferred one word between the cache and the
memory.
It is more efficient if multiple words, say 8, 16, or 32 words are
transferred at a time.
power.cs.lth.se transfers 128 bytes at a time.
Assume instead that our cache block size is 8 words.
Then we can eg fetch eight instructions at a time.
Since we store 8 consecutive words from memory in a cache row, we
only need, of course, to know the address of the first word in the block.

Lecture 9 2023 22 / 24

Cache Block Number

We can now view memory as an array, not of words, but of cache
blocks.
When the cache block size is eight words (or 23 words) we get the
cache block number of a word by dividing the word number by eight.
Alternatively we shift the word number, ie the address, to the right by
three, ie, we throw the last three bits of the address away.
The number of words in a cache block is called the BLOCK_SIZE.
Actually the BLOCK_SIZE is the number of bytes but we simplify the
presentation and only consider words.

Lecture 9 2023 23 / 24

Cache Block Number

block_num = address / BLOCK_SIZE;
i = block_num & (CACHE_SETS - 1);
for (j = 0; j < N; j++) {

if (cache_array[i][j].valid
&& cache_array[i][j].block_num == block_num) {

k = address & (BLOCK_SIZE - 1);
data = cache_array[i][j].data[k];
found = true;
break;

}
}

The data in a row is now an array of BLOCK_SIZE words.

Lecture 9 2023 24 / 24

