
What is meant by ”declarations” ???

A declaration associates an identifier with one of
variable,
function, or
type.

For example:

int* a; int *a, *b, *c;
int* b; typedef int integer;
int *c;
typedef int integer;

One declaration can have multiple variables and functions.

Lecture 8 2023 1 / 54

Beware of declarators

int* a; | int* a, b, c; // only a i s a pointer !
int* b; |
int *c; |

int a, f(int, int), v[10]; // va l id C but uncommon

Lecture 8 2023 2 / 54

Names spaces

Variables, types (typedef names) and functions belong to the same
name space.
Struct tags are in a separate namespace.

typedef int a;
a a; // error : redec larat ion of a
struct x { int y; } z; // tag x , f i e l d y , var iab le z
struct s { int s; } s; // OK.

Labels are in a separate name space as well:

void f()
{

goto f; // not a function ca l l !
f: printf("hello\n"); // target of the goto .
}

Lecture 8 2023 3 / 54

Declaring vs defining global variables

Declaring a global variable means to inform the compiler that a
certain variable exists with a type and a name.
It does not mean asking the compiler to reserve memory for it.
Defining a global variable means declaring the variable and telling the
compiler to reserve memory for it.
If we want to define a global variable and thus making sure its address
is ”here”, we have to give it an initial value:

int a = 12; // correct
extern int b = 12; // not portable
int c; // problematic s ince 2020!

Lecture 8 2023 4 / 54

New implementation defined behavior in gcc and clang

If we just want to declare a global variable but not reserving memory
for it, we use extern:

extern int a;

If we want to declare a global variable and don’t mind reserving
memory for it, we could skip extern:

int a;

This is no longer portable with gcc and clang: but use gcc -fcommon
Instead seeing this, they define a (reserve memory for it)

Since gcc 10.1 released in May 2020
With clang 11.0 released in October 2020

Skipping extern had the effect that if no other file in the program the
variable has been defined with an initial value, then the compiler will
reserve memory for it.

Lecture 8 2023 5 / 54

Wrong declaration 1

file a.c file b.c
-------- --------

extern int x; extern int x;

int main()
{

printf("x = %d\n", x);
return 0;

}

The compiler will complain that x is not defined (anywhere).

Lecture 8 2023 6 / 54

Wrong declaration 2

file a.c file b.c
-------- --------

int x = 1; int x = 1;

int main()
{
}

The compiler will complain that x is defined multiple times.

Lecture 8 2023 7 / 54

Wrong declaration 3 (but worked 1972-2019!)

file a.c file b.c
-------- --------

int x; int x;

int main()
{
}

Before recent changes in implementation defined behavior to gcc and
clang

The compiler (actually, the linker) would reserve memory for x
somewhere but not in memory corresponding to these files.
Global variables without extern were put in the ELF section
COMMON.

With recent changes to gcc and clang
The compiler puts the variables in the ELF section BSS
BSS means block started by symbol and the name is complete
nonsense and a historical rest

Lecture 8 2023 8 / 54

Correct declaration 1

file a.c file b.c
-------- --------

int x = 1; extern int x;

int main()
{

printf("x = %d\n", x);
return 0;

}

The compiler will reserve memory for x in file ”a.c”.

Lecture 8 2023 9 / 54

Correct declaration 2

file a.c file b.c
-------- --------

int x; extern int x;

int main()
{

printf("x = %d\n", x);
return 0;

}

The compiler will reserve memory for x somewhere but not in these
files.

Lecture 8 2023 10 / 54

Correct declaration 3

file a.c file b.c file globals.h
-------- -------- --------------

#include "globals.h" #include "globals.h" extern int x;

int x;

int main()
{

// use x // use x
}

Declare all global variables of an application in a file ”globals.h”
and include it when needed.
The same applies to abstract data types such as lists. Put the type
and function declarations in a header file.
Sometimes only the typedef and function declarations are put in the
public header file and the struct declarations in a private header file.
More about that later.

Lecture 8 2023 11 / 54

Variable length array: VLA

A local array (with automatic storage duration, i.e. allocated on the
stack) can have a non-constant size:

void f(size_t n)
{

int a[n];

/∗ . . . ∗/
}

When the execution comes to the declaration it evaluates and
remembers the size of n and the compiler must allocate memory for
the array.
This memory is allocated on the stack simply by changing the stack
pointer.
Thus the programmer does not have to (and cannot) deallocate that
memory.
The memory is automatically deallocated when the function returns.

Lecture 8 2023 12 / 54

Local array only

Since the memory for a VLA is allocated from the stack, only local
arrays can have a non-constant size.
VLA’s are different from flexible array members.
A VLA must be an ordinary identifier and not for instance a struct
member.
VLA’s were introduced in C99 and are very useful.

Lecture 8 2023 13 / 54

Restrictions of VLA’s

Unfortunately:
VLA’s has become optional in C11, but since gcc and clang supports
them most compilers will also.
It’s impossible to know whether the allocation succeeded or not.

Use with care and never for a size supplied as program input —
otherwise a security risk.
Commercial compilers use it (or a similar approach called alloca) to
improve speed.
For instance allocating an array of object pointers can make iteration
through a data structure simpler and faster — forget it in a nuclear
power plant though.

Lecture 8 2023 14 / 54

VLA’s and normal arrays

A VLA is organized in memory the same way as other arrays are.
The only difference really is that the compiler must produce code to
remember the array sizes.

void f(int a[3][4]);

void g(size_t m, size_t n)
{

int b[m][n];

f(b); // OK i f m == 3 and n == 4.
}

Lecture 8 2023 15 / 54

VLA parameters

A VLA can be a parameter:

void f(size_t m, size_t n, int a[m][n])
{

/∗ . . . ∗/
}

int b[10000][20000];

void g(void)
{

f(10000, 20000, b); // OK.
}

This is not dangerous in any way since the matrix was not allocated
on the stack.

Lecture 8 2023 16 / 54

A function prototype with VLA

Consider f again:

void f(size_t m, size_t n, int a[m][n])
{

/∗ . . . ∗/
}

How can we declare f in a header file?
We can use:

void f(size_t m, size_t n, int a[m][n]);

But if we don’t want to write m and n?
Recall: we can write prototypes without parameter names:

void* malloc(size_t);

Therefore we can do as follows:

void f(size_t, size_t, int [*][*]);

Can we remove one or both of the stars?
Lecture 8 2023 17 / 54

Recall array parameters become pointer parameters

An array parameter becomes a pointer parameter and we can therefore
skip the size:

void f(size_t, size_t, int [][*]);

Or:

void f(size_t, size_t, int (*)[*]);

But that does not win a prize for beautiful C code.

Lecture 8 2023 18 / 54

Variably modified types

A type with a VLA is called a variably modified type.
We can declare a pointer to a VLA:

void f(size_t n)
{

int (*p)[n];

/∗ . . . ∗/
}

Lecture 8 2023 19 / 54

Precedence and associativity

All operators are ordered according to their precedence.
For instance * has higher precedence than +.
The associativity specifies in which order multiple operators with the
same precedence should be evaluated.
The binary operators are left-associative.
For instance a - b - c is evaluated as (a - b) - c.
The unary, the assignment operators, and the conditional expression
are right-associative.
For instance a = b = c means a = (b = c).
a += b += c means a += (b += c).
If initially a = 1, b = 10 and c = 100, then the above results in
b = 110 and a = 111.
Thus the value of b += c is the new value of b.

Lecture 8 2023 20 / 54

More examples

What is the value of:

1 << 2 + 3

Lecture 8 2023 21 / 54

More examples

The value on the previous slide is:

1 << (2 + 3)
1 << 5
32

Lecture 8 2023 22 / 54

Evaluation of an expression

Operands smaller than int are converted either to int or
unsigned int.
The usual arithmetic conversions determine the type of the result of
an operation.
For instance:

unsigned char a = 1;
unsigned short b = 2;
double c;

c = a / b;
a = c + 1;

First both a and b are converted to int.
The type of the quotient is int which is then converted to double.
The type of the sum is double.

Lecture 8 2023 23 / 54

Assignment

At an assignment the value is converted to the type of the modified
variable.
In the previous example:

unsigned char a = 1;
unsigned short b = 2;
double c;

c = a / b;

What can we do to get 0.5 assigned to c?
What about:

c = (double)(a / b); // No ef fect !

One of the operands must be converted to double!

c = (double)a / b; // OK. c = 0.5

Lecture 8 2023 24 / 54

Assignment conversions

Recall that a pointer to void can point to any data object (but not to
functions).

char* cp;
signed char* scp;
int* ip;
long* lp;
void* vp;

vp = ip; // OK. void pointer always ok .
ip = vp; // OK. void pointer always ok .
ip = lp; // Always wrong to mix non−void−pointer types .
cp = scp; // No: char and signed char are d i f f e r ent types .

Lecture 8 2023 25 / 54

Exceptional conditions

Note the difference between the following:
the value of an operation cannot be represented in the type of the
expression
the value assigned to a variable cannot be represented in the type of
the variable

In the former case we have an overflow which can result in undefined
behavior and a crash.
In the latter case the implementation must document what happens
— for integers usually as many bits that fit are stored.

unsigned char a;
signed char b;
float c;
a = 0xfff;
b = 0xfff;
c = 1e100;

What are the values of a, b, and c?
Lecture 8 2023 26 / 54

Values

a = 255

b = -1

c = INFINITY

The macro INFINITY is defined in <math.h>

Lecture 8 2023 27 / 54

Another quiz

What is the value of the following:

unsigned char uc = 255;

uc + 1

Lecture 8 2023 28 / 54

Overflow

The value in the previous slide is 256 since uc is integer promoted to
the type int and then two operands of type int are added.
What about:

#include <limits.h>

int a = INT_MAX;

a + 1;

Lecture 8 2023 29 / 54

The result

In the previous slide, the type of the result is int but the sum cannot
be represented in that type.
For signed integers, an overflow triggers undefined behavior.
For unsigned integers, an overflow ”wraps around”, i.e. all unsigned
arithmetic is performed modulo one greater than the maximum value
of the type:

unsigned int a = UINT_MAX;

a + 1; // zero

For floating point on most machines the result becomes INFINITY.

Lecture 8 2023 30 / 54

Struct parameter

Given:

typedef struct {
double x;
double y;

} point_t;

void print(point_t p);

Assume we have calculated x and y and want to print them as a
point:

point_t tmp;

tmp.x = x;
tmp.y = y;

print(tmp);

Lecture 8 2023 31 / 54

We cannot use a cast instead

We cannot make a cast for an aggregate type.
Aggregate types are structs/unions and arrays.
What should we do?
As above or using the C99 compound literal.
Compound literals were first used in Ken Thompson’s C compiler for
the Plan9 operating system — recall Ken Thompson invented UNIX
(and UTF-8 and many other things).

Lecture 8 2023 32 / 54

Compound literals

Compound literals look like casts (explicit conversions) but they are
different.
One purpose of compound literals is to make it possible to create
constants for structs:

(point_t) { 1.23, 4.56 };

We can pass it to the print function:

int main(void)
{

print((point_t) { 1.23, 4.56 });
}

So what is a compound literal really and how it is implemented in C
compilers?

Lecture 8 2023 33 / 54

Details of compound literals

A compound literal is simply an anonymous variable initialized using
special syntax.
Since it’s a normal object, we can take its address:

void print(point_t*);

int main(void)
{

print(&(point_t) { 1.23, 4.56 });
}

We can also use designated initializers:

print(&(point_t) { .x = 1.23, .y = 4.56 });

Lecture 8 2023 34 / 54

Compound literals for other types

We can use compound literals for other types as well:

int* p = (int[]){ 1, 2, 3 };
int a = (int){ 1 };

There is no purpose to use compound literals for scalar types, however.

Lecture 8 2023 35 / 54

NAN and relational and equality expressions

Recall: NAN stands for not-a-number and is the value of expressions
which are not mathematically defined such as:

0/0 ∞/∞ ∞−∞

Floating point comparisons with NAN are always false.
Thus we should not change comparisons such as

if (a < b)
printf("case 1\n");

else
printf("case 2\n");

into:

if (b >= a)
printf("case 2\n");

else
printf("case 1\n");

Lecture 8 2023 36 / 54

Pointers and relational and equality expressions

The relational expressions are: < <= > >=

The equality expressions are: == !=

Pointers can be compared in relational expressions only if they point
to the same array object.
For relational expressions, scalar variables are treated as arrays with
one element.
The compiler must ensure that the first byte after the array is a valid
address.
Any valid pointers to compatible types can be compared in equality
expressions.

Lecture 8 2023 37 / 54

Valid optimization of array references

double a[N]; double* p = a;
double* end = &a[N];

for (i = 0; i < N; ++i)
x += a[i]; while (p < end)

x += *p++;

Don’t do this by hand, instead use the command: cc -O2

Do this only if you are not allowed to use compiler optimizations.
In the course Optimizing Compilers it is taught how this and other
optimizations are implemented.

Lecture 8 2023 38 / 54

Invalid optimization of array references

double a[N]; double* p = &a[N];

for (i = N-1; i >= 0; --i) while (--p >= a)
x += a[i]; x += *p;

In the last iteration p == a[-1] in the comparison.
The compiler is not required to make that address valid.
The code to the right triggers undefined behavior.

Lecture 8 2023 39 / 54

Modifications of variables

A sequence point, for example a semicolon, is used in C to determine
when side effects have been performed.
The most important side effect is the modification of a variable.
A variable may only be modified once between two sequence points.
The following are invalid:

a = a = 1;
b = ++b;
++c * c--;

In addition, a variable may not be read after a modification before the
next sequence point. Therefore also wrong:

b = (a = 1) + (a * 2);

The code is invalid if the left operand of the add is evaluated first —
which it may be since the evaluation order is unspecified.

Lecture 8 2023 40 / 54

Comma expression

A comma expression can be used when multiple variables should be
initialized in a for loop:

for (i = 0, p = list; p != NULL; p = p->next)
/∗ . . . ∗/

In a comma expression first the left operand is evaluated, and then the
right operand.
There is a sequence point between the evaluations of the operands.
The value of a comma expression is the value of the right operand.
To use a comma expression in an argument list, it must be enclosed in
parentheses:

printf("%d\n", (1, 2)); // pr ints 2

Lecture 8 2023 41 / 54

Alignment of pointers

Recall: if a type has an alignment b it means objects of that type
should have an address that is a multiple of b.
The operator _Alignof takes a type name and gives the alignment of
that type represented as size_t.
Including <stdalign.h> we can write alignof instead:

printf("%zu\n", alignof(double));

Suppose now we allocate 20 bytes and wish to store an object of type
double there:

char data[20];
double* p;

p = (double*)data;
*p = x; // No −−− probably not al igned !

First warning: this violates ANSI C aliasing rule but is sometimes used.
Lecture 8 2023 42 / 54

Aligning a pointer

We need to add a number to p so that its value becomes a multiple
of 8.
One attempt is:

unsigned a = (unsigned)p; // wrong type .
unsigned r = a % 8;

if (r != 0)
a += 8 - r;

p = (double*)a; // might not work .

If p = 15 then r = 7 and we add 1 to a.
An alternative is to calculate: (p + 7)/8 ∗ 8 — then we don’t need to
branch.
(15 + 7)/8 ∗ 8 = 22/8 ∗ 8 = 2 ∗ 8 = 16.
Remainder and division are expensive however.

Lecture 8 2023 43 / 54

Using bitwise operators

We can write p + 7 as x ∗ 8 + y , where 0 ≤ y ≤ 7.
The purpose of dividing and multiplying is to get rid of y .
How can we do that faster than using division and multiplication?
Bitwise operators are useful for this.
Dividing and multiplying by 8 is equivalent to clearing the bits which
contribute to y .
p + 7 = 15 + 7 = 22 = 16 + 4 + 2 = 101102

The value of the bitwise complement operator is the operand with
every bit inverted.
That is, we should do a bitwise and with the bitwise complement of
1112, in C: ~7:

unsigned a = (unsigned)p; // s t i l l wrong type .

a = (a + 7) & ~7;
p = (double*)a;

Lecture 8 2023 44 / 54

The uintptr_t

Since a pointer may be 64 bits and an unsigned int only 16 bits the
above code is wrong.
We should use the type uintptr_t defined in the header file
<stdint.h>.

Lecture 8 2023 45 / 54

Integer divide and remainder

The value of −5/3 is −1 but that was not always certain!
In ANSI C (i.e. before C99) the rounding mode was implementation
defined.
Since C99, ISO C follows FORTRAN which rounds towards zero (i.e.
truncation).
The % operator computes the remainder of a/b as r = a− a/b ∗ b
What is printed by the following program?

int a = 5;
int b = -3;
int q = a / b;
int r = a - q * b;
assert(a % b == r);
printf("q = %d, r = %d\n", q, r);

Lecture 8 2023 46 / 54

Integer divide and remainder

Output from the previous program is: q = -1, r = 2

What about the following program?

int a = -5;
int b = 3;
int q = a / b;
int r = a - q * b;
assert(a % b == r);
printf("q = %d, r = %d\n", q, r);

Lecture 8 2023 47 / 54

Signed versus unsigned integer arithmetic

Output from the previous program is: q = -1, r = -2

In general, the value of a % b has the sign of a — also if both are
negative.
For unsigned integers, r ≥ 0.

unsigned int a = 5;
unsigned int b = 3;
unsigned int q = a / b;
unsigned int r = a - q * b;
assert(a % b == r);
printf("q = %d, r = %d\n", q, r);

Lecture 8 2023 48 / 54

Arithmetic with both signed and unsigned integers

Suppose we have a + b and the operands have different types.
Then the usual arithmetic conversions apply.
Each arithmentic type has a rank and long double has highest rank
among real types (as opposed to imaginary or complex types) down to
char and _Bool.
Two types are corresponding if they only differ in signed versus
unsigned.
If one operand has e.g. type signed int and the other
unsigned int then the signed operand is converted to the
corresponding unsigned type, i.e. unsigned int.
Recall: all unsigned arithmetic is performed modulo 2N where N is the
number of bits in the type

Lecture 8 2023 49 / 54

Examples

−3 + 5 = 2 — both have type signed int

−3 + 5U = (232 − 3) + 5U = 2u — if UINT_MAX = 232 − 1.
−3/5U =?

−3%5U =?

Lecture 8 2023 50 / 54

Examples

−3/5U = 858993458
−3%5U = 3
3U/− 5 =?

3U%− 5 =?

Lecture 8 2023 51 / 54

Examples

3U/− 5 = 0
3U%− 5 = 3
What is printed by the program below?

if (-5 > 3U)
puts("PASS");

else
puts("FAIL");

Lecture 8 2023 52 / 54

More about usual arithmetic conversions

Recall: if the operands only differ in signed/unsigned then the signed
is converted to the corresponding unsigned type.
I should say: the rank of the type of the operand with signed type...
But ”simplify” it as: the rank of the signed type...
Now: if the rank of the signed type is higher than the rank of the
unsigned type and the signed type can represent all values of the
unsigned type, then the operand with unsigned type is converted to
the type of the signed type:

if (-5LL > 3U)
puts("FAIL");

else
puts("PASS");

Since the type signed long long can represent all values of type
unsigned int the conversion is to signed long long.

Lecture 8 2023 53 / 54

Another example with usual arithmetic conversions

Finally: if the rank of the signed type is higher than the rank of the
unsigned type but the signed type cannot represent all values of the
unsigned type, then the operand with signed type is converted to its
corresponding type:

// assume s izeo f (signed long) == s izeo f (unsigned int)
if (-5L > 3U)

puts("PASS");
else

puts("FAIL");

If the type signed long cannot represent all values of type
unsigned int the -5L is converted to unsigned long (and becomes
a big number...).
Warning: the C standard does not specify the output of the last two
examples since their behavior depends on the sizes of the integer types!
Summary: avoid comparing signed and unsigned types — especially
not corresponding types.

Lecture 8 2023 54 / 54

