
Contents Lecture 7

Writing Correct C Code
Writing Fast and Correct C Code

Lecture 7 2023 1 / 23

Writing Correct C Code

After correctness and maintainability, speed and/or code size are
usually very important qualities of C code.
Don’t optimize anything before you have a correct program.
The reference implementation should follow the specification for your
code in an obviously correct way — almost no matter how slow —
within practical constraints of course.

Lecture 7 2023 2 / 23

Making the Reference Implementation

While the reference implementation almost always should be written in
the same language as the final implementation, it might be a good
idea to use an existing tool or language with available libraries which
already (or almost) solve the problem (but not sufficiently fast).
Therefore: use whatever tool or language you think is easiest to make
a first correct version with.
For instance, Python, C++, Java, Mathematica, Matlab, Scala or
something else might be easiest to use,
or a commercial or open source app for something!
Keep a copy of the reference implementation for testing. It’s
invaluable.
Then, if you didn’t already use C as implementation language, do that.
Thus, when you have a simple-to-understand and correct reference
implementation, you want to write a faster version in C.

Lecture 7 2023 3 / 23

Uses of the Reference Implementation

Testing involves validating your fast versions against the reference
implementation.
It may also include proving there are bugs in any other versions made
by others — that is, if there are other versions and if your and their
fast versions do not produce the same output.
For example, if you want to write a clock-cycle true simulator of a
complex superscalar microprocessor, having a simple simulator which
does not model any pipeline or cache memory will be invaluable to
validate the complex model — or finding the first instruction with
wrong result!

Lecture 7 2023 4 / 23

Writing Correct and Fast C Code

Maintain correctness using the reference implementation.
Writing a faster version is what we call implementation tuning,
which we define as:

Definition
Implementation tuning is the manual application of code transformation
techniques which current state-of-the-art optimizing compilers are not
capable of doing automatically.

Lecture 7 2023 5 / 23

Improving the Performance of a Correct C/C++ Program

1 If performance is good enough then go on vacation.
2 Profile your program using different tools.
3 Figure out how you can improve the most time consuming part.

Should you use a different optimizing compiler or other optimization
flags?
Should you use a different algorithm and/or data structure?
Can you exploit something in the input to
make the common case faster?
Can you precompute or cache values?
Is it possible to use mathematics to simplify the program?
Can you use counters to collect statistics about the behaviour of your
program — if the profilers do not give you sufficient insights?
How can you exploit the behaviour you have detected?

4 Implement your ideas and make measurements to verify that your
ideas are correct.

5 Validate your program on all test cases.
6 Go to 1.

Lecture 7 2023 6 / 23

Profiling Tools

operf — samples the program counter and hardware counters
gprof — also samples the program counter and analyses the call graph
gcov — counts number of times each line is executed
All these tools are explained in the book.
Don’t forget: printf("counter X = %llu\n", x);

Simple counters can give a lot of insights — it’s usually a good idea to
use unsigned long long for counters — otherwise you might print
out nonsense, if your counters overflow.
Or better: typedef unsigned long long counter_t

Lecture 7 2023 7 / 23

Performance monitor counters

Special registers in the CPU
For instance four such registers
They can be programmed to count events
Some of the 960 events that can be counted on POWER8:

PM_DATA_FROM_MEM
PM_L1_ICACHE_MISS
PM_RUN_INST_CMPL
PM_TM_TBEGIN
PM_CYC (clock cycles)

After a selected number of events have occurred, an exception is
triggered in the CPU.
This changes the CPU state to supervisor mode, saves the PC, and
jumps to the operating system kernel.
The kernel collects the statistics (event type and PC) and returns to
user mode and resumes the program.

Lecture 7 2023 8 / 23

operf on Linux

First install it (but it is not supported on Windows Subsystem for
Linux)

sudo bash
apt install oprofile
echo 1 > /proc/sys/kernel/perf_event_paranoid

Then measure a program such as intopt (as user — not root), do:

operf -e CYCLES:100000:0:0:1 intopt -y 15 1

The first number specifies how many events to count before triggering
an exception.
The next is a mask, the third specifies whether kernel space should be
monitored, and the fourth whether user space should be monitored.
The statistics is saved in the directory oprofile_data.

Lecture 7 2023 9 / 23

intopt compiled without optimization

opreport -t 0.7 -l

prints all functions in which at least 0.7 % of the cycles where
sampled.
The essential parts of the output are:
CPU: ppc64 POWER8, speed 3491 MHz (estimated)
Counted CYCLES events (Cycles)
samples % symbol name
36404 87.3207 pivot
2544 6.1022 xsimplex
844 2.0245 select_nonbasic
673 1.6143 xinitial
368 0.8827 extend

Lecture 7 2023 10 / 23

intopt compiled with -O3

Redoing the measurement with the -O3 option to gcc, we instead get:
12079 86.3279 intopt pivot
1216 8.6907 intopt xinitial
242 1.7296 intopt xsimplex.constprop.0
145 1.0363 libc-2.27.so _int_malloc

As we can see, xsimplex has been cloned and specialized with
constant propagation.
The goal is to find the most time-consuming function, which in both
cases is pivot.

Lecture 7 2023 11 / 23

opannotate -s

To see which source line in pivot gets most samples, we can use

opannotate -s

which prints the source code file and the number of samples taken for
each line.
With optimization, the line number information is no longer accurate
and therefore we show the output from the unoptimized run.
Most samples were taken in the following loop

603 1.4464: for (i = 0; i < m; i += 1) {
104 0.2495: if (i == row)
55 0.1319: continue;

1721 4.1281: for (j = 0; j < n; j += 1)
743 1.7822: if (j != col)

27868 66.8458: a[i][j] = a[i][j]
- a[i][col] * a[row][j] / a[row][col];

: }

Lecture 7 2023 12 / 23

gprof

Source code must be compiled with -pg
Run the program first.
Then use:

gprof -T intopt

which produces the output:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
88.3 1.05 1.05 148711 0.01 0.01 pivot
5.9 1.12 0.07 7038 0.01 0.16 xsimplex
2.5 1.15 0.03 148796 0.00 0.00 select_nonbasic

Lecture 7 2023 13 / 23

gprof: call graph

0.00 1.19 3518/3518 intopt [1]
[4] 100.0 0.00 1.19 3518 succ [4]

0.00 1.18 3518/3519 simplex [6]
0.01 0.00 3518/3518 extend [14]
0.00 0.00 2444/2445 integer [23]
0.00 0.00 2428/2429 branch [24]
0.00 0.00 1758/3519 free_node [20]
0.00 0.00 16/16 bound [26]

intopt made all 3518 calls to succ
succ made 3518 of 3519 calls to simplex

Lecture 7 2023 14 / 23

Execution count per line: gcov

Compile with -fprofile-arcs and -ftest-coverage.
Run the program.
Then use:

gcov simplex.c

which produces simplex.c.gcov:

4130292: 478: for (i = 0; i < m; i += 1) {
3981581: 479: if (i == row)
148711: 480: continue;

64570580: 481: for (j = 0; j < n; j += 1)
60737710: 482: if (j != col)
56904840: 483: a[i][j] = a[i][j]

- a[i][col] * a[row][j] / a[row][col];
-: 484: }

Lecture 7 2023 15 / 23

Branch statistics: gcov -b

gcov -b intopt.c

In the file intopt.c.gcov we find for the function is_integer:

33933: 327: r = lround(x);
-: 328:

33933: 329: if (fabs(r-x) < intopt_eps) {
branch 0 taken 88% (fallthrough)
branch 1 taken 12%

29743: 330: *xp = r;
29743: 331: return 1;

-: 332: } else
4190: 333: return 0;

-: 334:

Lecture 7 2023 16 / 23

An Example: Ordering If-Else-Statements 1(3)

The code below tests for the most unlikely condition first!
How can we improve the loop?

int c;

while ((c = getchar()) != EOF)
if (c == ’\n’)

X;
else if (c == ’ ’)

Y;
else

Z;

Lecture 7 2023 17 / 23

An Example: Ordering If-Else-Statements 2(3)

Test for the most likely path first!

int c;

for (;;) {
c = getchar();
if (c > ’ ’)

Z;
else if (c == ’ ’)

Y;
else if (c == ’\n’)

X;
else if (c == EOF)

break;
else

Z;
}

Lecture 7 2023 18 / 23

An Example: Ordering If-Else-Statements 3(3)

Assume Z is so large we don’t want to duplicate it!

int c;

for (;;) {
c = getchar();
if (c > ’ ’)

L: Z;
else if (c == ’ ’)

Y;
else if (c == ’\n’)

X;
else if (c == EOF)

break;
else

goto L;
}

Lecture 7 2023 19 / 23

Cachegrind

Run with: valgrind --tool=cachegrind ./a.out
a6.c: T = 53.38 s
==1413==
==1413== I refs: 1,826,470,645
==1413== I1 misses: 1,069
==1413== L2i misses: 1,059
==1413== I1 miss rate: 0.00%
==1413== L2i miss rate: 0.00%
==1413==
==1413== D refs: 406,017,535 (405,215,452 rd + 802,083 wr)
==1413== D1 misses: 111,833,593 (111,826,864 rd + 6,729 wr)
==1413== L2d misses: 67,481,024 (67,474,321 rd + 6,703 wr)
==1413== D1 miss rate: 27.5% (27.5% + 0.8%)
==1413== L2d miss rate: 16.6% (16.6% + 0.8%)
==1413==
==1413== L2 refs: 111,834,662 (111,827,933 rd + 6,729 wr)
==1413== L2 misses: 67,482,083 (67,475,380 rd + 6,703 wr)
==1413== L2 miss rate: 3.0% (3.0% + 0.8%)

Lecture 7 2023 20 / 23

Summary

First write a correct version.
Then check if your program is sufficiently fast.
If it’s not, you need to understand why it isn’t and figure out how to
improve the situation.
Using profilers give you insights into the execution of your program.
This method is applicable to the problem of making small code as well.
Measure the size and study the assembler code to see if/how you can
improve it.

Lecture 7 2023 21 / 23

Using Simulators

Profilers do not always provide ”perfect” information.
For instance, Cachegrind gives cache miss rates but does not tell you
why there were misses.
Some simulators can see which variables map to the same place in the
cache and tell you that.
Then you probably can fix that by moving one of the variables.
Simulators are of course much slower than real machines.
However, since they can count clock cycles exactly (or at least
instructions) you often don’t have to run your benchmark for so long.

Lecture 7 2023 22 / 23

An Example

For example: suppose you have a short function and you want to
understand exactly what happens in it.
Instead of sampling the PC during 20 seconds or five minutes, you can
run the simulator once and it almost directly can tell you the function
takes 44 clock cycles to execute.
More importantly, it can visualize what happens in the pipeline so you
understand exactly why it takes 44 cycles.
Therefore simulators actually can be quicker — but usually they are
not.

Lecture 7 2023 23 / 23

