
Contents Lecture 6

Computer architecture development
Pipelined processors
More about the IBM Power architecture
Superscalar processors

Lecture 6 2023 1 / 60



The earliest computers

The earliest computers e.g. Z3, Z4, UNIVAC I, EDSAC and EDSAC
had very little hardware
One register called the ackumulator was the destination of all ALU
operations
The first general purpose machine with a register file was built 1956 in
England: the Pegasus which had eight registers.

Lecture 6 2023 2 / 60



Stack architectures: similar to rpn.c

Code size has always been important and one way to reduce code size
is to load and store implicit operands on the stack.
Current examples include some HP calculators and the Java virtual
machine.
Stack architectures can also simplify compilation, to a limited extent.
Burroughs produced several commercial machines in the early 1960
which were stack architectures.
The Burroughs machines had e.g. special instructions for managing
the call frames to better support Algol.
Stack machines fell out of fashion in the 1970s.

Lecture 6 2023 3 / 60



The first computer architecture: IBM 360

In the early 1960s, when a new machine was introduced, it normally
was binary incompatible with other machines, which means software is
thrown away.
At that time IBM sold seven different and incompatible machines
which led to increased costs.
In 1964 the term computer architecture was introduced by IBM
when it designed the IBM 360, a family of compatible machines with
different performance and costs. This was a major breakthough.
IBM 360 machines were byte-addressable and had general purpose
registers, and was a huge success.

Lecture 6 2023 4 / 60



The IBM z series

IBM mainframes are now called the z series for zero downtime
IBM z14 is an IBM 360 compatible machine launched 2017.
It has 10-core processors clocked at 5.2 GHz and can have up to
32 TB of RAM memory.
Not all but many applications from the 1970’s can run unmodified on
it.

Lecture 6 2023 5 / 60



Pipelined computers

Pipelining is a technique to make e.g. the assembly of cars more
efficient.
The key is that by having simple steps, each step can be fast.
We will see more about this but recall that instruction execution has
the steps:

1 Instruction fetch
2 Instruction decode and operand fetch
3 Execute
4 Memory access
5 Write back

The insight was that we might be able to have five instructions
executing concurrently, one in each step, leading to a five times faster
machine.

Lecture 6 2023 6 / 60



Control Data Corporation 6600

Thornton and Cray and others at CDC were the first to explore
pipelined instruction execution
Their CDC 6600 was the first pipelined load-store architecture.
The CDC 6600 was basically a RISC machine (we will get back to
that)
The CDC 6600 designers realized the essential connection (later
forgotten) between a ”clean architecture” and the possibility of an
efficient pipelined implementation of it.
This clean type of architecture came back in the 1980’s with Power,
MIPS, SPARC, Alpha, 88000, and later the ARM and many others.

Lecture 6 2023 7 / 60



A Software Crisis and the Semantic Gap

In the 1960’s, hardware costs were huge compared with software costs.
This switched in the early 1970’s and more and more complex software
started to become painfully expensive.
Some people thought the solution was to design machines which
would simplify compilation of high-level languages, and a so called
semantic gap was identified (in fact it was only nonsense).
For example, Digital Equipment designed the VAX architecture as a
true memory-to-memory architecture, which means that an instruction
can fetch operands from memory and write the result back to memory.
Examples of fancy VAX instructions: polynomial evaluation and stack
frame control.

Lecture 6 2023 8 / 60



Code Size

Why were computers being designed with more and more complex
instructions?
One reason was the time of instruction fetching: smaller code size
leads to fewer instruction cache misses and faster code.
A load-store architecture such as the CDC 6600, all operands must be
fetched from memory using load instructions, and written back using a
store instruction.
Another reason was that product lines competed with having more
complex instructions.
Recall the French engineer, author and pilot Antoine de Saint-Exupéry:
”An engineer knows that it is ready, not when there is nothing more to
add but when there is nothing more to take away.”

Lecture 6 2023 9 / 60



The IBM 801

John Cocke and his group of researchers at IBM Yorktown Heights
started in 1979 a project to design a new architecture from scratch
without any garbage from previous product lines remaining as
constraints:
Load-store architecture
No complex instructions that reduce the clock frequency
16 general purpose registers (later changed to 32 registers)
Intended to be used only with high level languages and an optimizing
compiler
This was the RISC concept (although the term was coined at Berkeley)
Intel tried the same with their IA-64 Itanium but it was too late to
replace X86 for them — AMD saw their opportunity to make a 64-bit
X86 and then Intel could not afford to miss that market.

Lecture 6 2023 10 / 60



The Power Architecture

The IBM 801 was a research prototype and was commercialized as the
IBM Power architecture
The POWER1 from 1990 had 800,000 transistors and was a
superscalar machine in which several instructions could start executing
concurrently.
The POWER2 had 15 million transistors per chip and was released
1993. It was used in Deep Blue which beat chess world champion
Garry Kasparov 1997.

Lecture 6 2023 11 / 60



POWER continued

The POWER4 had 174 million transistors and was released 2001 and
was the first chip multiprocessor.
POWER8 was released in 2014 has up to 12 cores per chip and 8
hardware threads per core (96 threads per chip), and is clocked at up
to 5 GHz.
The power.cs.lth.se machine is a POWER8 machine with ten
cores, clocked at 3.5 GHz.
POWER10 was released in August 2020

15 cores,
added more support for efficient matrix computations for AI workloads
can address up to 2 petabytes of RAM

Lecture 6 2023 12 / 60



The Power Architecture

Registers
Instruction formats
Classes of instructions:

Branch instructions
Fixed point instructions
Floating point instructions
Vector instructions
Support for encryption

Program examples

Lecture 6 2023 13 / 60



Power Registers

32 general purpose registers, 32/64 bits
R0 means zero for some instructions
32 floating point registers, 64 bits
32 vector registers, 128 bits
a number of special purpose registers, such as for:

storing loop iteration count to avoid i++ and i < n.
function call return address

Fixed point exception register XER, 32 bits
Three bits hold: summary overflow, overflow, and carry. The summary
overflow is set when overflow is set but only cleared explicitly by
writing to XER.

Lecture 6 2023 14 / 60



Power Registers: Link register

Functions start with a prologue which sets up the stack frame and
ends with an epilogue which removes it.
32/64 bits
The link register holds the return address for function calls and is
written implicitly: bl printf /* function call. */
by the branch-and-link instruction.
Accessed as a Special Purpose Register: SPR 8.
Reading the link register: mfspr R0, 8, or mflr R0 in the prologue.
Writing the link register: mtspr R0, 8, or mtlr R0 in the epilogue.

Lecture 6 2023 15 / 60



Power Registers: Count register

This is a special purpose register
Count register, 32/64 bits
The count register can be used to control loop termination, which is
faster than using general purpose registers, compare, and branch. Only
for one inner loop.
for (i = low; i < high; ++i)

S;

/* low in R3, high in R4. */
sub 5,4,3 /* R5 = high - low. */
mtctr 5 /* Repeat R5 times. */

L: S /* Statement S. */
bdnz L /* Decrement and branch to L if nonzero.*/

Lecture 6 2023 16 / 60



Power Registers: 8 four-bit condition registers

Four fields in each register:
Bit 0: Negative
Bit 1: Positive
Bit 2: Zero (or equal)
Bit 3: Summary overflow

Fixed point instructions optionally set CR0 (bits 0..3).
Floating point instructions optionally set CR1 (bits 4..7).
There are move and logical instructions for operating on the condition
registers.

Lecture 6 2023 17 / 60



Power Registers: more registers

32 floating point registers, 64 bits
Conforms to IEC 60559, i.e. the IEEE 754 floating point standard.
32 vector registers, 128 bits

Lecture 6 2023 18 / 60



Power Instruction Formats 1(2)

An instruction format defines what the instruction bits mean. The
Power has several formats and the more commonly used include:
I-form: e.g. for function call
18 LI
6 26

B-form: for conditional branches
16 BO BI BD AA LK
6 5 5 16 1 1

Lecture 6 2023 19 / 60



Power Instruction Formats 2(2)

D-form: e.g. for RT = RA + D.
PO RT RA D
6 5 5 16

X-form: e.g. for RT = RA + RB.
PO RT RA RB XO LK
6 5 5 5 10 1

How can the processor know which format to use?
The primary opcode (PO) gives this information.

Lecture 6 2023 20 / 60



Integer Numbers

C/C++ and other languages support both signed and unsigned
integers.
Signed numbers are represented in two’s-complement form.
A 4-bit register can represent the unsigned values 0..15 and the signed
values -8..7.
Positive numbers are represented in normal binary form, e.g. 5 as 0101.
Negative numbers are represented as 16-X, e.g. -5 as 10000 - 00101 =
01111 + 00001 - 00101 = 01010 + 00001 = 01011 = 1011.
We then expect that -5 + 5 would be zero:
1011 + 0101 = 10000 mod 216 = 0000

Q: What does 10002 mean? A: Either −8 or +8. It depends on the data
type!

Lecture 6 2023 21 / 60



Power Compare Instructions

Four integer compare instructions:
Signed compare, register-register
Signed compare, register-signextended immediate
Unsigned compare, register-register
Unsigned compare, register-immediate

Destination is a condition register field (any of the eight).
By default the assembler uses CR field 0 for integer compare.
By sign-extended is meant the most significant bit of the 16 bit
constant is copied to the other bits to preserve the value.
Signextend -8 from 4 to 6 bits: 1000 becomes 111000 since it means
-32 + 16 + 8 = -8

Lecture 6 2023 22 / 60



Power Branch Instructions

There are five main branch instructions:
Unconditional branch I-form, used for function calls.
Conditional branch B-form, very powerful branch instruction.
Branch conditional to Link Register, used for function return.
Branch conditional to Count Register, can be used.
System call (switch from user to operating system kernel).

Lecture 6 2023 23 / 60



Branch I-form

Six bits opcode 18 and 24 bits branch offset LI,
one bit AA: if AA then NIA = EXTS(LI) else NIA = CIA + EXTS(LI),
one bit LK: if LK then LR = CIA (used for function call),
Where NIA means Next instruction address (new value of PC),
CIA means Current instruction address (address of this instruction),
EXTS means extend sign,
and LR means Link register.

Lecture 6 2023 24 / 60



Power Branch B-form

16 BO BI BD AA LK
Six bit opcode 16, 5 bit branch options (see next slide),
5 bits BI select one bit in the condition register (ie, from any CR field)
BD is branch offset and AA and LK the same as for branch I-form.

Lecture 6 2023 25 / 60



Power Branch Options

BO Description
0000y CTR-=1; branch if CTR != 0 and COND is false
0001y CTR-=1; branch if CTR == 0 and COND is false
001zy branch if COND is false
0100y CTR-=1; branch if CTR != 0 and COND is true
0101y CTR-=1; branch if CTR == 0 and COND is true
011zy branch if COND is true
1z00y CTR-=1; branch if CTR != 0
1z01y CTR-=1; branch if CTR == 0
1z1zz branch always

COND is bit selected by BI and z is don’t care.
y is a branch-prediction hint made by the programmer or compiler.

Lecture 6 2023 26 / 60



Examples of Power Branch Instructions

Branch instruction Extended mnemonic Description
bc 16,0,L bdnz L Decrement and branch if nonzero
bc 4,2,L bne L branch if CR0 reflects ”not equal”
bc 4,14,L bne L branch if CR3 reflects ”not equal”

Some disassemblers show the extended mnemonics
As assembler programmers it is preferable to use the extended
mnemonics

Lecture 6 2023 27 / 60



Power Arithmetic Instructions

Many arithmetic instructions optionally can set the three first bits of
the CR0 register (i.e. negative, positive, or zero) using the Rc bit of
the instruction, and overflow (in the fourth bit of CR0 and in XER)
using the OE bit.
In assembler, these are specified with a dot and o as suffixes: addo.
1,2,3 means R1 = R2+R3; One of <,>,= and overflow are stored in
CR0 bits 0..3.
The D-form arithmetic instructions have a 16 bit constant which for
most instructions is signextended.
Eg addi uses the value 0 instead of the contents of register 0.

Lecture 6 2023 28 / 60



Power Fixed Point Add Instructions 1(2)

Add instruction Description/Real instruction ”Informal” Name
addi rt,ra,si rt = (ra==0?0:(ra)) + exts(si) Add Immediate
li rt,si addi rt,0,si Load Immediate
subi rt,ra,si addi rt,ra,-si Subtract Immediate
addis rt,ra,si rt = (ra==0?0:(ra)) + exts(si)∥0x0000 Add Immediate Shifted
lis rt,si addis rt,0,si Load Immediate Shifted
addis rt,ra,si rt = (ra==0?0:(ra)) + exts(si)∥0x0000 Add Immediate Shifted
add rt,ra,rb rt = (ra) + (rb) Add
add. rt,ra,rb rt = (ra) + (rb);set CR0 Add
addo rt,ra,rb rt = (ra) + (rb); set OV,SO Add
addo. rt,ra,rb rt = (ra) + (rb);set OV,SO,CR0 Add
addic. rt,ra,si rt = (ra) + exts(si);set CA,CR0 Add Immediate Carrying
addc rt,ra,rb rt = (ra) + (rb);set CA Add Carrying
addc. rt,ra,rb rt = (ra) + (rb);set CA,CR0 Add Carrying

Lecture 6 2023 29 / 60



Power Fixed Point Add Instructions 2(3)

Add instruction Description/Real instruction ”Informal” Name
addco rt,ra,rb rt = (ra) + (rb);set CA,OV,SO Add Carrying
addco. rt,ra,rb rt = (ra) + (rb);set CA,OV,SO,CR0 Add Carrying
adde rt,ra,rb rt = (ra) + (rb) + CA;set CA Add Extended
adde. rt,ra,rb rt = (ra) + (rb) + CA;set CA,CR0 Add Extended
addeo rt,ra,rb rt = (ra) + (rb) + CA;set CA,OV,SO Add Extended
addeo. rt,ra,rb rt = (ra) + (rb) + CA;set CA,OV,SO,CR0 Add Extended
addme rt,ra rt = (ra) + CA - 1; set CA Add to Minus One
addme. rt,ra rt = (ra) + CA - 1; set CA,CR0 Add to Minus One
addmeo rt,ra rt = (ra) + CA - 1; set CA,OV,SO Add to Minus One
addmeo. rt,ra rt = (ra) + CA - 1; set CA,OV,SO,CR0 Add to Minus One

Lecture 6 2023 30 / 60



Power Fixed Point Add Instructions 3(3)

Add instruction Description/Real instruction ”Informal” Name
addze rt,ra rt = (ra) + CA; set CA Add to Zero Extended
addze. rt,ra rt = (ra) + CA; set CA,CR0 Add to Zero Extended
addzeo rt,ra rt = (ra) + CA; set CA,OV,SO Add to Zero Extended
addzeo. rt,ra rt = (ra) + CA; set CA,OV,SO,CR0 Add to Zero Extended

Researchers at IBM have found that their compilers and/or assembler
programmers can make good use of these instructions.
This is still a Reduced Instruction Set Architecture
Better name is: Set of Reduced Instructions.
Of course you don’t need to learn all these instruction but you should
get the picture about what’s in the Power

Lecture 6 2023 31 / 60



Example Power Logical Instructions 1(2)

Instruction Description Name
andi. rt,ra,ui rt = (ra) & UI; set CR0 And Immediate
andis. rt,ra,ui rt = (ra) & (ui∥0x0000);set CR0 And Immediate Shifted
ori rt,ra,ui rt = (ra) | UI Or Immediate
oris rt,ra,ui rt = (ra) | (ui∥0x0000) Or Immediate Shifted
xori rt,ra,ui rt = (ra) ∧ UI Xor Immediate
xoris rt,ra,ui rt = (ra) ∧(ui∥0x0000) Xor Immediate Shifted
and rt,ra,rb rt = (ra) & (rb) And
and. rt,ra,rb rt = (ra) & (rb);set CR0 And
or rt,ra,rb rt = (ra) & (rb) Or
or. rt,ra,rb rt = (ra) & (rb);set CR0 Or
xor rt,ra,rb rt = (ra) & (rb) Xor
xor. rt,ra,rb rt = (ra) & (rb);set CR0 Xor

Lecture 6 2023 32 / 60



Example Power Logical Instructions 2(2)

Instruction Description Name
nand rt,ra,rb rt = ¬((ra) & (rb)) Nand
nand. rt,ra,rb rt = ¬((ra) & (rb));set CR0 Nand
nor rt,ra,rb rt = ¬((ra) | (rb)) Or
nor. rt,ra,rb rt = ¬((ra) | (rb));set CR0 Or
xor rt,ra,rb rt = (ra) & (rb) Xor
xor. rt,ra,rb rt = (ra) & (rb);set CR0 Xor
eqv rt,ra,rb rt = (ra) ∧ ¬ (rb) Equivalent
eqv. rt,ra,rb rt = (ra) ∧ ¬ (rb); set CR0 Equivalent
andc rt,ra,rb rt = (ra) & ¬ (rb) And complement
andc. rt,ra,rb rt = (ra) & ¬ (rb); set CR0 And complement
orc rt,ra,rb rt = (ra) | ¬ (rb) Or complement
orc. rt,ra,rb rt = (ra) | ¬ (rb); set CR0 Or complement

Lecture 6 2023 33 / 60



Power Memory Access Instructions 1(4)

Instruction Description Name
lbz rt,d(ra) rt = M[(ra==0?0:(ra))+exts(d)] Load Byte and Zero
lbzx rt,ra,rb rt = M[(ra==0?0:(ra))+(rb)] ... Indexed
lbzu rt,d(ra) ea=(ra)+exts(d);rt=M[ea];ra=ea ... with Update
lbzux rt,ra,rb ea=(ra)+(rb);rt=M[ea];ra=ea ... Indexed with Update
lhz rt,d(ra) rt = M[(ra==0?0:(ra))+exts(d)] Load Halfword and Zero
lhzx rt,ra,rb rt = M[(ra==0?0:(ra))+(rb)] ... Indexed
lhzu rt,d(ra) ea=(ra)+exts(d);rt=M[ea];ra=ea ... with Update
lhzux rt,ra,rb ea=(ra)+(rb);rt=M[ea];ra=ea ... Indexed with Update
lha rt,d(ra) rt = exts(M[(ra==0?0:(ra))+exts(d)]) Load Halfword Algebraic
lhax rt,ra,rb rt = exts(M[(ra==0?0:(ra))+(rb)]) ... Indexed
lhau rt,d(ra) ea=(ra)+exts(d);rt=exts(M[ea]);ra=ea ... with Update
lhaux rt,ra,rb ea=(ra)+(rb);rt=exts(M[ea]);ra=ea ... Indexed with Update

Lecture 6 2023 34 / 60



Power Memory Access Instructions 2(4)

Instruction Description Name
lwz rt,d(ra) rt = M[(ra==0?0:(ra))+exts(d)] Load Word and Zero
lwzx rt,ra,rb rt = M[(ra==0?0:(ra))+(rb)] ... Indexed
lwzu rt,d(ra) ea=(ra)+exts(d);rt=M[ea];ra=ea ... with Update
lwzux rt,ra,rb ea=(ra)+(rb);rt=M[ea];ra=ea ... Indexed with Update
lwa rt,d(ra) rt = exts(M[(ra==0?0:(ra))+exts(d)]) Load Word Algebraic
lwax rt,ra,rb rt = exts(M[(ra==0?0:(ra))+(rb)]) ... Indexed
lwau rt,d(ra) ea=(ra)+exts(d);rt=exts(M[ea]);ra=ea ... with Update
lwaux rt,ra,rb ea=(ra)+(rb);rt=exts(M[ea]);ra=ea ... Indexed with Update
ld rt,d(ra) rt = M[(ra==0?0:(ra))+exts(d)] Load Doubleword
ldx rt,ra,rb rt = M[(ra==0?0:(ra))+(rb)] ... Indexed
ldu rt,d(ra) ea=(ra)+exts(d);rt=M[ea];ra=ea ... with Update
ldux rt,ra,rb ea=(ra)+(rb);rt=M[ea];ra=ea ... Indexed with Update
lmw rt,d(ra) for r in rt..31 lwz r Load Multiple Word

Lecture 6 2023 35 / 60



Power Memory Access Instructions 3(4)

Instruction Description Name
stb rs,d(ra) M[(ra==0?0:(ra))+exts(d)]=rs Store Byte
stbx rs,ra,rb M[(ra==0?0:(ra))+(rb)]=rs ... Indexed
stbu rs,d(ra) ea=(ra)+exts(d);M[ea]=rs;ra=ea ... with Update
stbux rs,ra,rb ea=(ra)+(rb);M[ea]=rs;ra=ea ... Indexed with Update
sth rs,d(ra) M[(ra==0?0:(ra))+exts(d)]=rs Store Halfword
sthx rs,ra,rb M[(ra==0?0:(ra))+(rb)]=rs ... Indexed
sthu rs,d(ra) ea=(ra)+exts(d);M[ea]=rs;ra=ea ... with Update
sthux rs,ra,rb ea=(ra)+(rb);M[ea]=rs;ra=ea ... Indexed with Update

Lecture 6 2023 36 / 60



Power Memory Access Instructions 4(4)

Instruction Description Name
stw rs,d(ra) M[(ra==0?0:(ra))+exts(d)]=rs Store Word
stwx rs,ra,rb M[(ra==0?0:(ra))+(rb)]=rs ... Indexed
stwu rs,d(ra) ea=(ra)+exts(d);M[ea]=rs;ra=ea ... with Update
stwux rs,ra,rb ea=(ra)+(rb);M[ea]=rs;ra=ea ... Indexed with Update
std rs,d(ra) M[(ra==0?0:(ra))+exts(d)]=rs Store Doubleword
stdx rs,ra,rb M[(ra==0?0:(ra))+(rb)]=rs ... Indexed
stdu rs,d(ra) ea=(ra)+exts(d);M[ea]=rs;ra=ea ... with Update
stdux rs,ra,rb ea=(ra)+(rb);M[ea]=rs;ra=ea ... Indexed with Update
stmw rs,d(ra) for r in rs..31 stw r Store Multiple Word

Lecture 6 2023 37 / 60



Power Function Call Conventions

The function call conventions specify:
Which register is the stack pointer?
Which register is the frame pointer (if any) ?
How should parameters and return values be passed?
Where is the return value saved?

This specification is for a particular combination of processor and
operating system
Even though Linux/Power and MacOS X/Power use identical
hardware, and quite similar call conventions, there are some important
differences.
In this course we will not go inte the details of the call conventions
but you need to understand the disassembled Power code on Linux to
some extent.

Lecture 6 2023 38 / 60



Linux/Power Function Call Convention Basics

The stack grows toward lower addresses.
Register R1 is the stack pointer and its value is always 16 byte aligned
(the value in R1 is a multiple of 16).
Callee may destroy R0, R2 - R12, F0 - F13, V0-V19, LR, CTR, CR0,
CR1, CR5-CR7. The others must be saved and restored by the callee.
Integer parameters are passed in R3..R10 and remaining parameters in
are copied to the caller’s stack frame.
Return values are passed in R3.
Small struct/union parameters are copied to the callee as any other
parameters.
For larger struct/unions the address is used and if it is modified in the
called function it is copied there in order not to break the copy
semantics for parameters in C/C++.

Lecture 6 2023 39 / 60



Example Function and Effects of Compiler Optimization

.L.sum: int add(int a, int b)
std 31,-8(1) {
stdu 1,-64(1) return a + b;
mr 31,1 }
mr 9,3
mr 0,4 .L.sum:
stw 9,112(31) add 3,3,4
stw 0,120(31) extsw 3,3
lwz 9,112(31) blr
lwz 0,120(31)
add 0,9,0 // extsw = extend signed word.
extsw 0,0 // extsw makes sure r3 is in the
mr 3,0 // range of the type int, by
addi 1,31,64 // copying bit 31 to bits 32..63.
ld 31,-8(1)
blr

Lecture 6 2023 40 / 60



Adding 64-bit Integers

long long sum(long long a, long long b)
{

return a + b;
}

// 32-bit mode // 64-bit mode
sum: addc 10,6,4 sum: add 3,3,4

adde 9,5,3 blr
mr 4,10
mr 3,9
blr

In 32-bit mode: a = r3 × 232 + r4 and b = r5 × 232 + r6.
If there is a carry bit coming out to the left when adding r6 and r4 it is
used as input when adding r5 and r3 due to addc and adde.
Don’t forget to use the -m64 switch to gcc!

Lecture 6 2023 41 / 60



Example C programs translated to Power: WHILE

int f(int n) gcc with optimization:
{ f:

int i; mr. 0,3
int s; li 9,0 # i = 0

li 3,0 # s = 0
s = 0; blelr- 0
i = 0; mtctr 0

.L6: add 3,3,9
while (i < n) { addi 9,9,1

s += i; bdnz .L6
i += 1; blr

}
return s;

}

mr. copies n to r0

The dot in mr. request that it should be checked whether r0 becomes
less, equal or greater than zero.
blelr- is conditional return if n ≤ 0
The minus in blelr- says the branch is unlikely which helps the
processor to guess what to do next.

Lecture 6 2023 42 / 60



Recall the stages in instruction execution

Fetch: read an instruction from memory
Decode: interpret what the bits mean and read operands from register
file
Execute: perform an ALU operation, or calculate a memory address
Memory access: only for load and store instructions
Write back: write back result to a register

These five steps are an example. Some processors have 20 steps.

Lecture 6 2023 43 / 60



Another Example Power Assembler Program

add r3,r4,r5 ; R3 = R4 + R5
subf r6,r7,r8 ; R6 = R8 - R7
addi r6,r6,1 ; R6 = R6 + 1
lwz r7,4(r5) ; R7 = MEM[R5 + 4]
add r6,r6,r7 ; R6 = R6 + R7

Lecture 6 2023 44 / 60



Instruction Execution in the Five-Stage Pipeline

Clock cycle FETCH DECODE EXECUTE MEMORY WRITE BACK
ACCESS

1 add
2 add
3 add
4 add
5 add
6 subf
7 subf
8 subf
9 subf

10 subf

The add and subf instructions take ten clock cycles to execute.

Lecture 6 2023 45 / 60



Pipelined Execution

Clock cycle FETCH DECODE EXECUTE MEMORY WRITE BACK
ACCESS

1 add
2 subf add
3 addi subf add
4 lwz addi subf add
5 add lwz addi subf add
6 add lwz addi subf
7 add lwz addi
8 add lwz
9 add

The best we can do is completing one instruction per clock cycle.

Lecture 6 2023 46 / 60



True Data dependencies

The subf produces a value which the addi consumes, and the lwz
produces a value which the last add consumes.
Since an instruction writes back a value to the register at the last
pipeline stage, the value read in the second stage is not up-to-date.
This is called a True Dependence or Read-after-write hazard (RAW).
The dependence between the subf and the addi can be handled by
adding more hardware to ”forward” the result to the addi.
Forwarding is not possible from the memory access to the execute
stages

Lecture 6 2023 47 / 60



Output dependencies

If two instructions write to the same register, there is an Output
dependence between them (or Write-after-write hazard).
div. r4,r5,r6 ; modifies R4
subf r4,r8,r9 ; also modifies R4 so output dependent

; on the div instruction

If the div. takes a lot of time, we don’t want the subf to wait.
Superscalar processors solve this in hardware using register renaming.

Lecture 6 2023 48 / 60



Anti dependencies

If one instruction reads a register and a subsequent writes to it, there
is an Anti dependence between them (or write-after-read hazard).
add r4,r5,r6 ; modifies R4
stw r4,16(r6) ; reads R4 and saves R4 at M[16 + R6]
subf r4,r8,r9 ; modifies R4 so anti

; dependent on the stw

If the stw takes a lot of time, we don’t want the subf to wait.

Lecture 6 2023 49 / 60



Pipeline Stalls

Since the lwz gets the data from memory at the end of the fourth
pipeline stage and the data is needed at the beginning of third stage,
we must suffer a one cycle delay.
This is controlled by the hardware which stops the execution of the
instruction which depends on the lwz (all subsequent instructions are
also stalled).
Other stalls happen at branch instructions. If the processor uses the
ALU to calculate the new address for the PC, it has nothing to do for
a few cycles until the new PC is used to fetch instructions.
Modern processors use hardware which tries to guess early where each
branch is going and then speculatively fetch instructions from there.
This helps a lot.

Lecture 6 2023 50 / 60



Reducing the Effects of Pipeline Stalls

What can programmers do about pipeline stalls?
Avoid using global variables in inner loops.
Avoid using virtual functions — but the project’s main goal might not
be reducing pipeline stalls but rather deliver a product on time. Be wise.
Avoid using many branches in inner loops.

What can compilers do about pipeline stalls? A lot:
By finding which instructions depend on which, compilers try to
schedule instructions so a producer instruction executes (result
becomes ready) sufficiently long before the consumer instructions.
Allocating global variables to registers in the loop, so you don’t have to.

Lecture 6 2023 51 / 60



Instruction Latency and Throughput

The latency of an instruction is the number of cycles it takes to
produce the result.
The latency is not reduced by pipelining.
Throughput is the number of instructions (of a certain kind) the
processor can complete per cycle once the pipeline has been filled.
For example: a pipelined floating point add may have a latency of five
clock cycles and a throughput of one: with no true dependences, one
add can complete every cycle. An integer add takes one cycle and is
not pipelined (except for fetch/decode/execute...).
Usually the divide instruction is not pipelined. The latency may be 30
cycles and the troughput 1/30.

Lecture 6 2023 52 / 60



Superscalar processors

A pipelined processor as we just saw was state-of-the-art for
workstations during the 1980’s and is typical for some processors for
embedded systems today.
Current high-performance processors try to complete multiple
instructions every clock cycle. Our power.cs.lth.se can have more
than 200 instructions executing in each of the ten cores.
For instance, several instructions may be sent to different parts of the
core every clock cycle.
A superscalar processor has multiple so called functional units, eg two
single-cycle integer ALUs, two pipelined floating-point units, two
pipelined vector units, at least one load-store unit, and a special
branch processing unit.

Lecture 6 2023 53 / 60



Essential features in a superscalar processor

Speculative execution: instructions can start execute before it is known
that they really should, but they are not permitted to permanently
modify (destroy) either memory or registers.
Three essential features of a superscalar processor are:

Branch prediction: hardware fetches instructions from memory where
it guesses the program will go. Usually they predict the right way.
When a misprediction is detected, all wrong-path instructions must be
marked as such.
Reorder buffer: every instruction is put in a FIFO queue and they may
only update ”state” (e.g. memory) if they reach the end of the FIFO
and have not been killed.
Register renaming: a technique to remove output and
anti-dependencies at the hardware level.

These three together make it possible to execute instructions
speculatively. A speculatively executed instruction can modify a
rename register but not memory. If it is cancelled, the new register
value in the rename register is simply not copied to the real register.

Lecture 6 2023 54 / 60



Branch prediction

The processor has tables where previous branch outcomes are stored.
When fetching an instruction at address A, the processor checks the
tables and decided whether the next instruction to fetch is at A+ 4 or
an address stored in the table.
When ”looking” at a superscalar processor, one can see that it
sometimes can start fetch and execute instructions in a called
method before the call instruction has executed!
Such instructions are executed speculatively and it must be easy for
the hardward to cancel them if needed for some reason (not for this
course: e.g. a pagefault occurs before the call).

Lecture 6 2023 55 / 60



Register renaming 1(4)

Anti and output dependences at the register level are not real
dependences
They exist because some instructions happen to use the same register
number for different purposes.
Instructions with anti and output dependences do not communicate
data between them.
In a true dependence, one instruction really needs a value computed
by some other instruction, so it must wait until the value has been
computed.
Register renaming at the hardware level removes anti and output
dependences.

Lecture 6 2023 56 / 60



Register renaming 2(4)

Consider register renaming for the integer registers, called the general
purpose registers (GPR) on the Power.
There are 32 GPRs and e.g. 92 rename registers for these.
There is a data structure (in hardware, of course) which says in which
rename register the most recent value of each GPR is.
When an instruction wants to read a register, e.g. R3, it checks the
data structure to see if the normal R3 is up-to-date, or if the value is
in a rename register and which.
When an instruction wants to write to a register, it asks for a new
rename register, but if none is available the instruction must wait.

Lecture 6 2023 57 / 60



Register renaming 3(4)

With this scheme we can have 92 instructions in the pipeline which
modify integer registers.
What if an instruction wants a value from a rename register, but that
value is still being computed, i.e. not yet finished?
Then a so called tag (or ticket) for that rename register is given to the
instruction who wants to read the register.
When the rename register is updated, the instructions with a tag
waiting for that register can proceed.

Lecture 6 2023 58 / 60



Register renaming 4(4)

Not all registers are renamed.
Typically on a Power, the integer, floating point, vector, and condition
registers are renamed.
On some Power processors earlier than ours, the link register was not
renamed.

Lecture 6 2023 59 / 60



Reorder buffer

The Reorder buffer is a FIFO and controls that all instructions finish in
the program order (unless it is certain that they cannot ”make
troubles”: a simple add cannot but a store or conditional branch can).
When this FIFO is full no new instructions can be sent to the various
functional units (integer ALU, floating pointer ALU, etc).
If an instruction is to be cancelled, then the data structure for the
rename registers must be updated, so that no future instruction gets
the value produced from a cancelled instruction.
Some instructions are so called serialized which means they are slower,
e.g. by letting all previous instructions leave the FIFO before starting.
Eg extended add (with carry) and move to/from link or condition
registers can be serialized.

Lecture 6 2023 60 / 60


