
Declarations

Storage class specifiers

Type specifiers

Type qualifiers

Function specifiers

Declarators

Type names

Type definitions

Initialization

Lecture 5 2023 1 / 21

Storage class specifiers: static at block scope 1(2)

int fun(int a, int b)
{

static int initialized; /∗ zero . ∗/
if (!initialized) {

init();
initialized = 1;

}
/∗ do the normal work . . . ∗/

}

Used to make an identifier invisible outside the block (function in this
case)
Static storage duration: variable is not located on the stack but among
global variables; preserves its value across function calls

Lecture 5 2023 2 / 21

Storage class specifiers: static at block scope 2(2)

int fun(int a, int b)
{

static int c = 12; // OK.
static int* d = &c; // OK.
static int* e = &a; // Inva l id .

}

A static variable can be initialized with a constant expression
An address may or may not be constant: &c is a constant expression
but &a is not.

Lecture 5 2023 3 / 21

Storage class specifiers: extern 1(2)

extern int a; // does not reserve storage for a .

int main()
{

sizeof a;
return 0;

}

If the value of an extern identifier is used, storage must have been
reserved for it somewhere in some file.
In the program above, the value of a is not used so no definition is
needed

Lecture 5 2023 4 / 21

Storage class specifiers: extern 2(2)

static int a; // reserves storage for a.
extern int a; // a s t i l l invisible outside the f i l e .
extern int b; // b is global visible outside the f i l e
static int b; // Undefined behavior . static follows extern.
int fun(); // Implicitly external linkage .
int main() { fun(); } // Use fun assuming it has external linkage .
static int fun() { } // Undefined behavior .

The extern does not change a previously declared visible storage class.
static followed by extern is OK but extern followed by static is not.
These rules have to do with how one-pass compilers can be
implemented, assembler code may already have been generated which
cannot be changed.

Lecture 5 2023 5 / 21

Storage class specifiers: auto and register

int fun()
{

register int c;
int* d = &c; // inva l id
register int e[4] // OK.
register struct { int a; int b; } f; // OK.

}

auto is completely useless (and does not mean the same as in C++)
It is still in the C standard since changing the standard should not
break existing C code
register indicates to the compiler that the variable should be kept in a
register if possible. usually ignored, except for semantic analysis:
the address of a variable with register storage class cannot be taken

Lecture 5 2023 6 / 21

Storage class specifiers: typedef

typedef int int32_t;
typedef struct info_t info_t;
struct info_t {

info_t* next;
int data;

};

typedef creates a synonym for a type.
typedef is not really a storage class specifier. called so for syntactic
convenience only.

Lecture 5 2023 7 / 21

Type specifiers: basic types 1(2)

The type specifiers are: void, char, short, int, long, float, double,
signed, unsigned, _Bool, _Complex, _Imaginary,
struct-or-union, enum-specifier, and typedef-name.
The type specifiers are combined into lists including signed char,
unsigned char, char, signed long long and long double.
Note that signed char, unsigned char, and char all are different
types: char behaves like one of the other two (which is
implementation-defined) but it is a distinct type.

char* s;
unsigned char* t = s; // inva l id .

Lecture 5 2023 8 / 21

Type specifiers: basic types 2(2)

_Bool a;
#include <stdbool.h>
bool b;

The type _Bool was introduced in C99.
<stdbool.h> defines bool as a macro which expands to _Bool.
A bool can only take the values zero and one.
An assignment to a bool variable stores a one if the expression is not
zero.

Lecture 5 2023 9 / 21

Type specifiers: enum

enum colour { RED, BLUE, GREEN };
enum a { a, b = 100, c };
typedef enum { PORSCHE, MERCEDES, KOENIGSEGG } car_t;
car_t car = PORSCHE;

An enum declares named int constants
Enums are ”better” than #defines because debuggers understand them
The tags colour and a are in a name space different from variables
and enumeration constants.
The variable car can be used where an int can be used, eg as an array
index.

Lecture 5 2023 10 / 21

Type specifiers: structs and unions

struct s {
int a; // OK.
int b:1; // OK, but signedness impl. def .
signed int c:1; // OK, one signed bit .
unsigned int d:1; // OK, one unsigned bit .
_Bool e:1; // OK.
car_t f:2; // OK i f implementation permits.
int g(int, int); // No, not in C.
int (*h)(int, int); // OK. Pointer to function .
int i[0]; // No (but valid in GCC).
int j[]; // OK i f last member in C99

};

Avoid using plain int as bitfield type. Specify whether it is signed or
not.

Lecture 5 2023 11 / 21

union

union u {
char a[9];
double b;

};

Alignment: for example, a 4-byte int wants to have an address that is
a multiple of 4
What is the size of this union?

Lecture 5 2023 12 / 21

Flexible Array Member 1(3)

struct s {
size_t n;
int* a;

};

struct s* s;

s = xmalloc(sizeof(struct s));
s->n = n;
s->a = xmalloc(n * sizeof(int));

Lecture 5 2023 13 / 21

Flexible Array Member 2(3)

struct s {
size_t n;
int a[1];

};

struct s* s;
size_t size;

size = sizeof(struct s) + (n-1) * sizeof(int);
s = xmalloc(size);

s->a[n-1] = 119; // Array index out of bounds => UB
// UB == undefined behavior

Known in the C standard as the ”struct hack”.
Everybody ”knows” it works but tools may complain.

Lecture 5 2023 14 / 21

Flexible Array Member 3(3)

struct s {
size_t n;
int a[]; // Flex ib le array member

};

struct s* s;
size_t size;

size = sizeof(struct s) + n * sizeof(int);
s = xmalloc(size);
s->a[n-1] = 119; // OK

Avoids storage for the pointer and is valid since C99
Flexible array member cannot be only attribute
Flexible array member must be last!
Therefore at most only one flexible array member!
Only for heap allocated structs!

Lecture 5 2023 15 / 21

Type qualifiers

const int a = 12; // OK.
const int* b = &a; // OK.
*b = 13; // inva l id .
a = 14; // inva l id .

const the variable cannot be changed after initialization.
volatile the variable can be changed in ”mysterious” ways: do not put
it in a register.
restrict a pointer parameter with restrict qualifier points to data
which no other visible pointer can refer to. helps optimizer but can
cause extremely obscure bugs if the programmer is not careful.

Lecture 5 2023 16 / 21

Volatile qualifier

#include <signal.h>
volatile int x;
void catch_ctrl_c(int sig) // called when you hit CTRL−C.
{

x = 0;
}

int main() // below line wil l te l l your computer to call the
{ // function catch_ctrl_c when you hit CTRL−C.

signal(SIGINT, catch_ctrl_c);
x = 1;
while (x) // when compiling with optimisation and without

; // volatile , GCC thinks X cannot change!
}

Lecture 5 2023 17 / 21

Const and restrict qualifiers

The const qualifier informs the compiler it can put a variable in
read-only memory. Only an initialisation is permitted.
The restrict qualifier informs the compiler that two parameters can
not point to the same memory area. This is new in C99 and its
purpose is to tell the compiler some advanced tricks are legal.

void f(restrict int* a, restrict int* b, int n)
{

int i;
for (i = 1; i < n-1; i++)

a[i] = 2 * b[i-1] + 3 * b[i] + 4 * b[i+1];
}

Lecture 5 2023 18 / 21

Declarators: Type constructors

There are three type constructors:
Array
Function
Pointer

Array and Function have higher precedence than Pointer
Place array dimension or the function’s parenthesis to the right of the
declarator and a star before the declarator
Confusion arises because the type cannot be read from left to right
but must be read from ”inside” to the ”outside”: int (*a[12])(int);.
What is the type of a?

Lecture 5 2023 19 / 21

Declarators: Examples

int a; // int
int *b; // pointer to int
int **c; // pointer to pointer to int
int d[4]; // array of int
int e[4][5]; // array of array of int
int *f[4]; // array of pointers
int (*g[4])[5]; // array of pointers to array of int
int *h(); // function returning pointer to int
int (*i)(); // pointer to function returning int
int *j()(); // NO: func returning func returning pointer to int
int (*k())(); // func returning pointer to func returning int

A function cannot return a function or an array, only pointers to them.

Lecture 5 2023 20 / 21

Initialization

int n = 10;

typedef struct { int a, b, c, d; } type_t;
int main()
{

int a[10] = { 1, 2 }; // rest wil l be set to zero.
int b[] = { 1, 2, 3 }; // sizeof b == 3 ∗ sizeof(int)
int c[] = { [4] = 12 }; // c[0..3] == 0
type_t d = { .a = 3, .c = 5,6 }; // d.d == 6.
int e; // undefined value .
static int f; // zero.
typedef int array[]; // incomplete type array
array g = { 1, 2, }; // does not affect the type array .
array h = { 1, 2, 3 }; // OK: array s t i l l incomplete.
int i[n]; // undefined values
int j[n] = { 1, 2, 3 }; // no

}

Lecture 5 2023 21 / 21

