
Contents Lecture 4

An introduction to computer organization.
The machine.c program for simulating a microprocessor.

Lecture 4 2023 1 / 23



An Introduction to Computer Organization

computer organization: generic view of a computer
computer architecture: more details to make it efficient

Processor or CPU (central processing unit)
Memory
Hard disk
Network interface
Input device, e.g. keyboard
Output device, e.g. screen
Software

Lecture 4 2023 2 / 23



The hardware to study in this course

We will study the parts which affect the performance of your program:
You will learn how slow memories are.
You will learn why and how cache memories can speedup programs.
You will not learn how hard disks work (take the Operating systems
course)
You will not learn how to ”trick” the machine to ”think” it has
gigabytes of RAM for each running program (also OS course)

The essential parts in this course are:
Processor
Memory hierarchy (registers, caches, main memory, swap)
Software

Lecture 4 2023 3 / 23



Components in a Processor

A processor has the following hardware components (among others):
An arithmetic and logic unit (called ALU) which e.g. can add two
numbers and jump to a function
Three sets of registers:

Integer registers r0..r31 for integers and addresses (i.e. for pointers
but as you know, an address is just a number so it makes sense...)
Floating point registers f0..f31 for real numbers
SIMD vector registers v0..v31 which can contain e.g. four array
elements at a time — either floating point or integers.

A special register called the program counter which holds the address
of the memory location which contains the next instruction to fetch
and execute.

Lecture 4 2023 4 / 23



What a Processor can Do

A processor can do the following things (among others):
Transfer data from a memory cell A to a register R (called a read)
Transfer data from a register R to a memory cell A (called a write)
ALU operations on the contents of registers and store result in another
register
Branch — to be explained later

Lecture 4 2023 5 / 23



Instructions

An instruction is a number stored in a memory cell which tells the
CPU what to do.
For instance, the instruction to add registers R12 and R29 and save
the result in register R3 on a Power is specified by the number:
2087512596.
A processor does the following:

Fetches the instruction in the memory cell pointed out by the program
counter.
Reads the contents of some registers specified in the instruction.
Recall the registers are located in the CPU.
Performs the ALU operation specified in the instruction.
Writes back the result to another register also specified in the
instruction.
Adds one to the program counter and repeats these steps.

Lecture 4 2023 6 / 23



2087512596 means add r3,r12,r29 for a Power CPU

An instruction has fields with names and widths in bits eg:
PO RT RA RB OE EO Rc
6 5 5 5 1 9 1

The opcode (operation code) tells the processor what it should do and
the other fields tells it e.g. with which registers.
PO is primary opcode, RT is target register, RA and RB are source
registers, OE indicates whether overflow should be reported, EO is
extended opcode, and RC indicates whether a condition register
should be set. Ignore OE and RC for now.
Our Power add instruction has the following values for these fields:

31 3 12 29 0 266 0
011111 00011 01100 11101 0 100001010 0

Lecture 4 2023 7 / 23



Why this is encoded as 2087512596

We can interpret the sequence of bits as a polynomial.
Denote each bit bi where we count i from the right.
The instruction then becomes:

∑i=31
i=0 bi × 2i

31 3 12 29 0 266 0
011111 00011 01100 11101 0 100001010 0

If we make groups of four bits we can easily convert the sequence to a
number in base 16, called a hexadecimal number.
Although we don’t usually write an instruction in base 10, here it is:

0111 1100 0110 1100 1110 1010 0001 0100
7 c 6 c e a 1 4 = 2087512596

Lecture 4 2023 8 / 23



Some rules

The processor architect decides which fields to use and their positions.
The processor can understand what to do by extracting the opcode
fields and fetching the operands.
The primary opcode is always in position 0 (IBM counts from the left
in a word).
To instead subtract two registers, the extended opcode 40 is used.
The extended opcode is not always used, e.g. when adding a constant
half of the instruction (16 bits) specifies the constant and the fields
RB, OE, EO, and RC are not present.
All instructions have the same width — not on X86 though.
Power is an example of a so called RISC processor, which are superior
to CISC processors. The ARM processor in your phone is also a RISC
processor.
We will explain the difference between RISC and CISC later, but the R
stands for Reduced and the C for Complex.

Lecture 4 2023 9 / 23



An example processor

Look at the source code of the file machine.c.
That program simulates a simple processor with registers, and a
memory.
First an assembler file is read and translated to machine code which is
stored in the memory starting at address zero.

Lecture 4 2023 10 / 23



Assembler program: 10 + 13

0: sub 0, 0, 0 ; set register 0 to 0.
1: addi 1, 0, 10 ; R1 = R0 + 10 = 0 + 10
2: addi 2, 0, 13 ; R2 = R0 + 13 = 0 + 13
3: add 3, 1, 2 ; R3 = R1 + R2 = 10 + 13
4: halt 0, 0, 0 ; stop the computer!

Lecture 4 2023 11 / 23



Assembler program:
∑100

i=1 i

0: sub 1, 1, 1 ; sum = R1 = 0
1: sub 2, 2, 2 ; i = R2 = 0
2: addi 3, 2, 100 ; R3 = 100
3: sgt 4, 2, 3 ; R4 = R2 > R3
4: bt 0, 4, 8 ; Branch to 8 if R4 nonzero
5: add 1, 1, 2 ; sum += i
6: addi 2, 2, 1 ; i++
7: ba 0, 0, 3 ; Goto 3
8: halt 0, 0, 0 ; Halt the machine

The result will be in R1 when the machine halts.

Lecture 4 2023 12 / 23



Assembler program for n!

int fac(int n)
{

if (n == 1)
return 1;

else
return n * fac(n-1);

}

int main()
{

printf("fac(%d) = %d\n", 5, fac(5));
return 0;

}

Lecture 4 2023 13 / 23



Assembler program for n!

Issues:
Since the fac function makes a function call, it must remember where
it was once the called function is completed.
In this case, the called function happens to be fac but recursion is
irrelevant, i.e. recursion does not make this more complicated —
recursion makes life easier.
The value of the parameter n must also be remembered somehow.
Where is the parameter n in the first place? In a register or in memory?

Solutions:
We use a stack and allocate a so called stack frame for each function
call.
The stack frame has space for the return address and the local
variables (i.e. n).
We put the parameters in registers R1, R2, ..., R10.
With more than ten parameters, the additional are pushed on the stack.

Lecture 4 2023 14 / 23



Factorial program

; R1 is the stack pointer
; R31 holds the return address after a CALL
; R3, R4 etc hold parameters.
;
; execution starts here.
sub 0,0,0 ; initialise R0 to zero
addi 1,0,1024 ; initialise stack pointer
call 0,0,19 ; call main
call 0,0,26 ; call exit

Lecture 4 2023 15 / 23



Factorial program

;
; function FAC: parameter N comes in R3.
;
st 31,1,-1 ; save return address
st 3,1,-2 ; save parameter N
subi 1,1,2 ; decrement stack pointer
seqi 4,3,1 ; R4 = N == 1
bf 0,4,12 ; branch if N != 1
; return 1
addi 3,0,1 ; R3 = 1
addi 1,1,2 ; increment stack pointer
jmp 0,31,0 ; jump to return address

Lecture 4 2023 16 / 23



Factorial program

;
; return n * fac(n-1)
subi 3,3,1 ; N-1
call 0,0,4 ; recursive call. result in R3
ld 4,1,0 ; reload parameter
mul 3,3,4 ; R3 = N * fac(N-1)
ld 5,1,1 ; reload return address
addi 1,1,2 ; increment stack pointer
jmp 0,5,0 ; jump to return address

Lecture 4 2023 17 / 23



Factorial program

;
; function MAIN
;
st 31,1,-1 ; save return address
subi 1,1,1 ; decrement stack pointer
addi 3,0,5 ; N = 5
call 0,0,4 ; call fac
ld 5,1,0 ; reload return address
addi 1,1,1 ; increment stack pointer
jmp 0,5,0 ; jump to return address
;
; function EXIT
;
halt 0,0,0 ; halt the machine

Lecture 4 2023 18 / 23



The stack: contents when recursion stops

1023 3 return address from init
1022 23 return address from main
1021 5 parameter
1020 14 return address from fac
1019 4 parameter
1018 14 return address from fac
1017 3 parameter
1016 14 return address from fac
1015 2 parameter
1014 14 return address from fac
1013 1 parameter

Lecture 4 2023 19 / 23



Some questions

What will happen if our main tries to compute 600!?
The stack pointer we be decremented and point into the instructions
and overwrite some and then the machine will either discover a correct
but meaningless instruction or an incorrect instruction.
When is this a problem on real machines?
When highly recursive functions declare large local data stored in stack
frames (not references pointing to large objects), especially on
multiprocessors since then the stack for each thread is smaller.
Do you understand how instruction execution works now? Hope so.

Lecture 4 2023 20 / 23



Summary so far

What would the performance of the machine we just saw be?
Disastrous, because:

Both instructions and data always access main memory which is slow.
Only one instruction is executed at a time.

The advanced microprocessors you will learn about is the result of 50
years of computer architecture research.
How can we make clever use of the transistors on a chip to execute
existing programs faster?
The other side of the question is, how can we write new programs
which exploit the existing machine? This is what our course will be
about.

Lecture 4 2023 21 / 23



Computer architecture

We can add some more instructions to the description in machine.c
and translate it to VHDL (a hardware description language) and then
send in a file and get back a chip (and an invoice, unfortunately). So,
are we done now?
For correctness, yes.
For performance, no.
What can we do?

Add small fast cache memories.
Execute multiple instructions at the same time.
Add many processors on one chip — a chip multiprocessor.
Connect multiple chips through some kind of network — a parallel
computer.

Lecture 4 2023 22 / 23



Computer architecture research

Actually, before we do anything, we need to understand where the
performance bottlenecks are.
A computer architect is free to do anything with billions transistors
but is forced to obey three rules:

Performance: a new idea must lead to substantial performance
improvements
Programmability: the machine should run C (and FORTRAN if it’s a
supercomputer) effectively.
Cost-effectiveness.

Usually also binary compatibility is required for market acceptance (see
what happened to Intel’s IA-64 Itanium — called Titanic)
Numerous businesses have invented faster computers without
considering these rules, wasted big money and/or gone bankrupt.

Lecture 4 2023 23 / 23


